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Abstract

The modular function spaces are natural generalization of spaces like Lebesgue space, Orlicz space,
Lorentz p-space, Orlicz—Lorentz space, Musielak—Orlicz space, et al. The function modulars lack
basic and flexible properties that norm functions have, as they are functional lacks homogeneity and
subadditivity and, therefore, it might be surprising to use techniques involving asymptotic centers,
normal structure and uniform convexity to obtain fixed point theorems. The purpose of this paper is to
give a new accelerated iterative algorithm for multi valued\ single valued mappings in modular
function spaces and to prove some results about their convergence (strong or weak) to a fixed point (or
a common fixed point). Through the work, the modular function satisfies (UUC1) property and -
condition. Sometimes the work required the use of the Opial’s property or demi-closed condition.
The intent of this manuscript is proving the existence and unigueness of fixed point inducing from
weak convergence of a forked iterative scheme. This scheme is constructed by five-step iterative for
(A, p) -firmly nonexpansive (multi\ single) mappings in modular spaces with respect to modular p
satisfies (UUC1) property and A2-condition. To obtain these results and other finding, the definitions
of weak convergence, demi-closeness and Opial’s condition format for the case of double sequences.
Note that the authors presented a previous study on the strong convergence of forked double
sequences including important results, see references.
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Introduction

Fixed point theory in general is a thriving field
for researchers whose purpose is to work on the
existence of iterative scheme to reach the fixed
point as quickly as possible in different spaces.
There are many applied sciences as well as
engineering, that can be formulated in the form of
an integral equation or differential equation, and
this equation can easily be transferred to the fixed
point theory, as here lies the importance of the fixed

point topic to prove the existence and unique of the
solution®. In addition, the fixed point theory is
included in the field of physics, game theory and
economics?, as well as, many researchers used fixed
point theory to study the stability of the differential
equation see®, for whoever is looking for more
applications, * about existences solution for
differential equations. In general, to solve fixed
point problems analytically is almost impossible,
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therefore, resorting to the approximate solution by
using iterative scheme for, see®, over the years the
fixed point problem has evolved and many iterative
schemes have emerged to solve the fixed point,
research is still ongoing in order to develop
algorithms and obtain faster and more efficient
algorithms®. The notion of modular spaces, as a
generalization of metric spaces introduces by
Nakano and redefined and generalized by Musielak
and Orlicz that have been studied by many
researchers’®. Khamsi et.al ° the first to discuss the
concept for a fixed point in modular function
spaces. While Kozilowski developed the fixed point
topic extensively in modular function spaces see'®
12" since then the theory of fixed point has become
prevalent, culminating in the publication when the
researchers worked on the fixed point in different
spaces see™™. Recently, Salman and Abed gave
various results for new iterative schemes that
suitable with (A, p) — firmly nonexpansive
multivalued mappings™. Here, a five-step iterative
scheme is introduced that, at first glance, seems
forked, but it's not hard. This scheme is constructed
for (4,p)- firmly nonexpansive (multi\ single)
mappings in modular function spaces. Many
different p-weak convergence results are proved for
double scheme of that under consideration.

Let Q be a nonempty set and X be a nontrivial o-
algebra of subsets of L,,. let p be a nontrivial ring
subsets of Q, which means that p is closed with
respect to forming finite union, and countable
intersections and differences, Assume further that
EnAepforany E€pandA € X, let us assume
that there exists an increasing sequence of sets K, €
p such that Q = UK,,. Now E := the linear space of
all simple functions with supports from p and M,
:=the space of all extended measurable functions.

In this study, L,will be a modular function spaces
with respect to p € R and L, be its dual of L,.
Recalling the following

Definition 1°% If p is convex modular in X, then is
called modular spaces

L, ={f € M:p(Af) — 0as 1 — 0}

The modular spaces L, it could be in the form an F-
norm define by

11, = infta >0 oy < 3

If p is convex and modular F-norm is define

: f
Ifll, =infla>0: p(1) <1}
F-norm is called Luxemburg norm.

Definition 2%: Let p:M — [0, ] possesses the
below properties

1-p(0) =0ifandonlyif, f =0,p —a.e
2- p(af) = p(f), for a any scalar.

3- plax + By) < p(x) + p(y) for every a, =0
witha + g = 1.

p is called a convex modular.
Definition 3! Letp € R

1- The sequence {f,,} is called p-convergent to f if
p(fn=f)—0

2-A sequence {f, } is p-Cauchy sequence if p(f,, —
fm) — 0asn,m— o

3-Aset B L, is called p-closed if for any f;, € L,
the convergence p(f,, — f) — 0 and f belongs to
B.

4-A set B T Ly, is called p-compact if every f, €
B, there exists a subsequence {f, } and f in

pUn, —f) = 0.

Definition 4%: A duality pairing in modular
function spaces and denoted by p- duality pairing is
define as (.,.): L, X L, — R such that (u\ h) =
h(u), where w € L, and h € Ly,

Proposition 1% Let (.,.) is the by p- duality
pairing on L, X Ly, then

1-(au+ Bv \ h) = a{u\ h) + B{v \ h)
2-(u\ ahy + Bhy) = afu \ hy) + B{u \ hy)
3-(u\h)y=0foralluel, h=0

4-(u\ h) = 0 forall h € L}, u=0.
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Definition 5%: In modular spaces let E, the dual for
Ly,
duality mapping
P = p” W}
Lemma 17 Let {pn}nq1, {6n}n=1and {{n}ny
nonnegative sequence such that

Pn+1 < (1 - en)pn + (n

Where {6,} sequence in (0,1) and {{,,} sequence in
real number such that

then  h:L, — 2L is called p-normalized
if Hu)={hel,(u\h)=

Yme1 0p < oo and Y5~ ¢, < oo, then lim p, is
n—oo
exists.

Definition 6: Let p be a nonzero convex regular
modular defined on Q let > 0,e >0 define

D(r,e) ={(f,9):f,g € Lp,pf <7,pf —g = €r}
Leté; (r,e) = inf{l — %p (f%) : (f,g9) € D(r, 6)}
if D(r,e) # @and &,(r,e) =1,IfD(r,e) =0

Note that, p satisfy (UC1) if for every r>0,e > 0
& (r,e) > 0then D(r,€) # .

Note that: p satisfy (UUC1) § = 0,e > 0 there
exists n,(r, €) > 0 depending only on § and € such
that &, (r,€) > n.(r,e) >0 forany r > 4.

Definition 7°%: A set E c L, is said to be p-
proximinal if for each f € L,, exists an element g
in E then (f—g)=dist,(f,E) =inf{ p(f —
h):hinE} .

Here, P,(E) denotes the family of nonempty p-
proximinal, p-bounded subset of E,

Cp(E) denotes the family of nonempty p-closed, p-
bounded subset of E,

Hp(.,.)

Hy(A,B) = max{ Supsey dist, (f, B),

supgep dist, (9,A)} A, B € Cy(Ly)

where  dist,(f,B) = inf{p(f — g),g € B}. As it

is known Hy(.,.) refers to p- Hausdorff distance
on Cy,(E).

Definition 8% Let p € R then p has A,-condition if
supp(2f,,D) —» 0 as k — o and D — @, and
sup p(fn, D) — 0.

Lemma 2% Let p € R and p is (UUCL), let {¢,} in
(0,1) be bounded away from 0 and 1, if exists
constant m > 0 such that

lim sup,, 0 p(fp) < m,limsup,_,,p(gn) <m

and  lim,_ep(tafn + (1 —t)gn) =m, then
limy e p(fu = gn) = 0.

Lemma 3°%: Let p € R and A4, B € P,(L,) for each
finA there exists ginB then p(f—g)<
H,(A, B).

Definition 9°*: c L, , let T: E — 2F called satisfy
condition (1) if there exists no decreasing function
@:[0,00) — [0,0) with @(0) =0,@(r) >0 for
all r € [0, 0] and p(f —=Tf) =

B(dist, (f, F,(t))) forall f € E.
Preliminaries

Salman and Abed™ mentioned the definition of
(4, p)-firmly nonexpansive mapping in multivalued
mapping for modular spaces

Definition 10: LetT: E — 2F said to be ( 4,p) -
firmly nonexpansive multivalued mapping if for A
in (0,1)

Hy(Tf,Tg) < p[(1 =D(f — g) + A(u — )]
ueTf,veTg .

Definitions 11: A double sequence f; ,, an modular

spaces in Ly, is called p-strongly convergence to any

point z in Lp, if lim p(fy, —z) <€, and write
n—ooo

fk,n - Z.

Definitions 12:A double sequence fj ,, an modular
spaces in L,, is called p-weakly convergence to any
point z in Lp, if there exists A in Lj, such that
n]l_r)r(l)o p(Afxn — Az) <€, and write f; , — z.

Lemma 4: Let f,, be a double sequence in
modular function spaces than every p-strongly
convergence is p-weakly convergence.

Proof: let fi ,, — z and A in L, then
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nll_rgo P(Afen —Az) < r}gnw pP(A(fin — 2))
< Alm p(fin — 2)
<€

Hence, fi, — z

Note that: The concept ( 4, p) - firmly nonexpansive
multivalued mapping denoted by ( 4, p)-FNMM

Definition 13: Let p € R and E in Ly, E is called
satisfying p-Opials condition if for any double
sequence fx , in E p-weakly convergence to a then
forall bin E

lim infp(fy, —a) < lim infp(fy, —b), with
n—oo n—oo
a#*b

The definition of demi-closeness in accordance
with the double sequences is below

Definition 14: Let p€R and E in L,, E and
T:E — 2F said to be demi-closed with respect to b
in E, if for any double sequences fj , in E and f} ,,
p-weakly convergence to a and T (fy,,) p-strongly
convergence to b then a in E and T (a) = b.

Or, (I = T) is demi closed, if the double sequence
frn I E is p-weakly convergence to a in E and
(I —T) p-weakly convergence to 0, then (I —
T)(a) = 0.

Now, define Tx: E — 2E and E nonempty convex
subset of L,the following equation

Tif = A =nITf + mew
1

where 1, in(0,1)and f,w € E

let T:E — 2F, and E nonempty convex subset of
L, sequence, here, the sequence {f,} introduced
by the following algorithm

1
u = —T7]
k.n n+1 kn

hk,n = (1 - ﬁn)fk,n + ﬁnuk,n
Ikn = Vkn

]k,n = (1 - an)gk,n + anWin

fk,n+1 = Mgn, neN 2

Whel’e Tk'n € Pka (fk,n)' Uk,n (S Pka(hk,n)'Wk,n (S
PpT"(gk,n), and my, € PpT"(]k,n), also {a,} and

{Bn} in(0,1).
In this paper study Eg.1 when the value of w = 0.

Lemma 5: Let h:L, — 2L be the p-normalized
duality mapping, there for any f, g € E then for all
h(f +g) € H(f +g) then p(f +g) = p*(f) +
p*(9)

Proof: by Proposition 1 and Definition 5
PP(f+g) =(f+g\h=(\h+{g\h)
=p*(f) +p*(9)

Lemma 6: Let h:L, — 2L be the p-normalized
duality mapping and let f,g two function in
modular spaces if p(f) < p(f + ag) then exists
h € H(f) and h(g) = 0 where « in [0,1].

Proof: By Lemma 5 and Definition 5

p(f) < p(f + ag) then p(f)* < p(f + ag)?
< p(f)* + p(ag)?
< p(f)2 + ap(g)?

So p(f)? < p(f)? + ah(g), clear h(g) = 0.

Definition 15: Let p € R, E in L, and E is p-closed
and convex said to be p-weakly lower semi
continues if every sequence {fy,} in E p-weakly
convergence to f This implies to p(f) <
lim_ infp(ficn).

Lemma 7: Let p €R, E in L, and E is p-closed

and convex satisfies p-weakly lower semi continues

and {f}. »} sequence in E such that lim p(afy, +
n—oo

(1 — a)s; — s;) exists for « € [0,1] then s; = s,.

Proof: Let exists fk_nj,fk_nr two subsequence of

fx.n Such that fk,nj — s, and fk_nr — s, then
Afin; + (L —a)sy =53 = 51— 5,

By p- is weakly lower semi continues Definition 15
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p(sy—s2) < nll_ngo infp(afin, + (1 —a)s; —s3)
= nll—rféo infp(a(fin; = 1) + 51— 52)
= nll_T]go infp(a(fyn —s1) + 51— 52)
< nll_T)’go infp(a(fin, — S1) + 51— 52)

Leth = (fin, — 51)

By Lemma 2-8 there exists h € H(s; —s,) such
that h(fk,nr - 51) >0

Now, h(fin, —s1) = Lim h(s; —s1) = —h(s; —
n—oo
52)

By Definition 5, then —p?(s; —s,) =0, hence
p%(s; —s;) < 0ands; =s,.

Lemma 8: Let peR and p is (UUCL), A,-
condition, let E be nonempty p-bounded, convex
and p-closed, E c L,, and T, Ty,: E — 2Fare (4, p)-
FNMM, let {f, »} a double sequence define by Eq.
2 then nli_rpoop(f"'" — 5) exists for all s fixed point.

Proof: by Eq. 2, convexity of p, Definitions 10,
Lemma 3 implies that

p(fk,n+1 - S) = p(mk,n - S)
< Hy(Py *(Jicn), By “(5))

<A =-m)pUkn —S) 3

p(]k,n - S) < p ((1 - an)gk,n + anwk,n) - S)
Results and Discussion

Below p satisfies (UUC1) and A,-condition and
E be nonempty p-bounded, convex and p-closed
E c Lyasin (°and °)

Theorem 1: Let p e R, p is (UUCL) and A,-
condition, let E be nonempty p-bounded, convex
and p-closed E c L, and ,Ty:E — 25 , are be
(4, p)-FNMM, let {f} »} in E define by Eq. 2 then

limy—.co distop(fim Py * (ficn)) = O
Proof: By Lemma 8 lim,_,.p(fin — S) exists

Let limyp(fun—S) =k  where k=0

7

< (1= a)p(Grn —5) +
aan(Pka(gk,n)’ Pka (s))

<[ —ap) + an (1 = m)]p(Grn — ) 4
Also, P(Grn —5) = p(Win —5) <
Hy (By* (R, By *(5))
< (1 =m)p(hin —s) 5
Similarly, p(hyn = s) = p(Bntn +

(1 - .[))n)fk,n - S)
< Bnp (er,n - 5) + (1 - Bn)p(fk,n - 5)

n+1
< Bty (By “(fien), By () + (1 = B)p(fien — 5)
< [ﬂn(l - le) + (1 - ﬁn)]p(fk,n - S) 6
By Eg. 3, Eq. 4, Eq. 5 and Eq. 6,
p(fk,n+1 - S) < .unp(fk,n - S)

pn = [(1— le)z(l = Bn)(1 —ay)
+ (1 =)’ an(1 = By)
+ (1 =m0 = ap)Bn
+ (1 - nk)4anﬁn]

By Lemma 1-7, lim,_op(fin — ) exists for all
s € E,(T).

Note that: lim, ,ep(fin — Sk ) is also exists when
Sk € E,(Ty) it is possible to prove it in the same
way.

By Eqg. 4, Eq. 5, and Eq. 6 the following hold

plhen—5) < A —np(fu—5) < p(fu—s) =

lim, _,ep(hy,—5s) <k 8
limn_wop(gk,n — S) <k 9
limn_mp(]kln - s) <k 10

p(vin —s) < H, (PpT"(hk,n), P (s)) <
(1 = 1)p(hin = s)

< p(fun =)
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lim p(vg, —s) < lim p(fxn—5) <k 11
n—oo n—oo

p(uk,n - S) < Hp (Pka(fk,n)vaTk(S)) <
(1 = n)p(fien — s)

< (fk,n - S)
then lim p(ug, —s) <k 12
n—oo

p(Win — ) < Hy (B} (gin), By *()) <
1= n)p(grn — )
< p(gk,n - S) < (fkn - 5)
then lim p(wy, —s) <k 13
n—oo
p(Myn — ) < Hy(By *(Jicn), By “(5))
<A -=n)pUkn—5)
< p(fkn —S)
then lim p(my, —s) <k
n—oo
14

Let lim a, =«

p(fk,n+1 - S) = p(mk,n - S) =
Hy (PPTk(]k,n)' PPTk(S))
<A =1)pUkn —5) < p(Jin —5)

< planwin + (1 — ap)Gin — ) < anpWin —
$) + (1 = an)p(Grn = )

s0, lim infp(fines —s) < lim inflanp(Wien —
s) + (1 — an)p(Gin — 5]

then, k< nlgnoo infa,p(Wgn, —5s) + (1 —a)k =

ak < a lim infp(w,, —s)
n—oo
hence,k < lim infp(wy, —s) 15
n—oo

By Eq. 13 and Eq. 14, lim p(wy, —s) =k
n—oo
16

p(Wk,n - 5) < Hp (Pka (gk,n)erTk(S)) < p(.gk,n -
s)

then, k < p(gkn — 5) 17

By Eq. 9 and Eq. 17, lim p(gxn—5s)=k
n—oo
18

Since, p(gk,n — s) = p(vk,n - s),
so,nlimoop(vk_n - s) =k 19

p(vin —s) < H, (PpT" (hin), PpT" (s))
<@ —nplhen —s)

< p(hk,n - S)
lim (e 5) < lim p(re )
S0, k< nlg’%op(hk,n - S)
20

By Eg. 8 and Eq. 20, then nlimmp(hk_n —-s)=k

21

By Eq. 21, lim p(hy, —s) =k =
n—oo

n]i_l}gop(lgnuk,n + (1 - :Bn)fk,n - S) =k

Jim p(Ba(ien = 5) + (1= ) (fien —5) = k
22

By Eq. 9, Eq. 12, Eq. 22 and Lemma 2,
Jim p(fin = wen) =0 then  wen € By (fign).
since distyp(fin By “(f)) < lim p(fion = tin),

limpy—co distyp(fion By * (fin)) =0, This
completes the proof.

Theorem 2: Let ,Ty:E — 25 | are be ( A,p)-

FNMM, let {fy,} in E define by Eqg. 2 and s4,s;

fixed point of T in E then lim p(afy, +
n—oo

(1 — a)s; — s;) exists.

Proof: To prove lim p(afi, + (1 —a)s; —s3)
n—oo
exists

Letygn(a) = p(afin + (1 —a)s; —s2)
Vn(o) = (51 - 52)' Vn(l) = (fk,n - 52)
Define R,:E — 2E forallm e N

Rn(fk,n) = Pka [(1 - an)fk,n + anuk,n]

= Pka (hk,n) = UVUkn
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p (Rn(fk,n,l) - R, (fk,n,z)) = p(vk,n,l - vk,n,z)

By Lemma 3 <
HP (A kal (hk,n,l)v P kaz (hk,n,z))

< p(hk,n,l - hk,n,z) 23

By Definitions 3, convexity of p, and Lemmas 2, 3,
hence

p(hk,n,l - hk,n,z)

B
= p[(l - Bn)fk,n,l + n _:1 Tkn1
B
(1 - Bn)fk,n,z + n—-:l Tkn,2

< (1 - .Bn)(fk,n,l - fk,n,z) + .[))n(rk,n,l - Tk,n,Z)
< (1 - ﬁn)(fk,n,l - S) + (1 - 3n)(fk,n,2 - S) +
.Bn (Tk,n,l - S) + .Bn (Tk,n,z - S)

< (1 - Bn)(fk,n,l - S) + (1 - .Bn)(fk,n,z - S)
+ BuHp (P (fina ), By ()
+ BuHp (P (finz2), By ¥ (s))

< (fem1 = 5) + (fenz =) 24

Let I(k,n)m =

Rieny+m Rien)+m—1 Raeny+m—2 Ruen)
And I(k.n)m(fk,n) = f(k,n)+m: I(k,n)m(s) =S

By Eqg. 23, Eg. 24 and convexity of p become
p (I(k,n)m(fk,n,l) - I(k,n)m(fk,n,z))

< p(I(k,n)m (fk,n,l) - S)
+ p(l(k,n)m (fk,n,z) - S)

< (fem1 = 5) + (fenz =) 25

Let b(k,n)m = p(l(k,n)m(afk,n +(1- a’)sl) -
(al(k,n)m(fk,n) + (- a)sl)) forall k,n,m €N

By convexity of p

b(k,n)m = p(l(k,n)m [afk,n + (1 —a)s;] —s1) —
p(al(k,n)m(fk,n) +(1- (l)Sl - Sl))

< p(tfin — @51) = p(fin — a51) = 0
26

Now,
Yen)+m = P(@fen)+m + (1 — a)s; — s3)
= p(al(k,n)mf(k,n) + (1 - a)sl - 52)

= p(al(k,n)mf(k,n) +(1- a)sl Yy
+ I(k,n)m [af(k,n) +(1- a)sl]
- I(k,n)m[af(k,n) +(1- a)sl])

< bkaym + PUkmym[@faemy + (1 — @)s1] = s2)
< bieym + p(@fkny + (1 —a)sy —s2)
= Dk nym t Vin ()
Then y geny+m (@) < Vien(@)
S0, Im ¥k ny+m(a) < lim vy n(a)
Hence, n]E)r(l)o p(afin + (1 —a)s; — s;) exists.

Theorem 3: Let p € R satisfy (I — T) dim closed,
let E be p- compact satisfying p-Opials condition
and , Ty: E — 2 | be (4, p)-FNMM, then {f} ,} in
E define by Eq. 2 p-weakly convergence to s, for s
unique fixed pointof T in E.

Proof: s € F,(T), by Lemma 8 nlgnoop(fk,n —5)
exists

Since E is p- compact f;, has two convergence
subsequence fk,nj, fen,

Let fx» p-weakly convergence to s; and s,

S1,S In E weak limit of fk_nj and fen 4 =T)
dim closed at zero

(I =T)(sy) = 0then T(sy) = s, 51 € E,(T)

Similarity (I —T)(s,) =0 then T(s,) = s,, s, €
F,(T)

TO prOVE Sl = SZ

Assume that s; # s,, by p-Opials condition

Jim p(fin = 51) = Jim p (fin; = s1)
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< lim p (fk,nj —5;) <

n—oo

lim_p(fin = 52)

n—oo

nh_r)rcln p(fk,nr - 52)

IA

lim p(fin, —51)

lim p(fim — 51).

n—oo

Contradiction, then s; =s;, S0, fx, p-weakly
convergence to unique fixed point s; for T in E.

Theorem 4: Let p e Rand (I —T) dim closed at
zero let E be p- compact satisfying p-weakly lower
semi continues and ,T,:E — 2F | are be ( 4,p)-
FNMM, then {f} ,} in E define by Eq. 2 p-weakly
convergence to s, for s unique fixed point of T in
E.

Proof: Let f; , p-weakly convergence to s; and s,
(I = T) dim closed at zero

(I—=T)(s1) =0 then T(s;) =s1, s1€FE(T),
Similarity (I —T)(s,) =0 then T(s,) =s,, s, €
E,(T)

Since E is p- compact, f,, has subsequence fk,nj
p-weakly convergence to s .

frn has another subsequence fk,nr p-weakly
convergence to s,

By Theorem 2 lim p(afy, + (1 —a)s; —s;)
n—oo

exists
And by Lemma7 s; = s,

Then f;., p-weakly convergence to unique fixed
point s, for T in E.

Theorem 5: Let ,Ty: E — 2E | are ( 4, p)-FNMM
and satisfy condition (I), then {f ,} in E defined by
Eq. 2 p-weakly convergence to s, for all s;, fixed
point of Tj, in E.

Proof: By Lemma 8 limy, op(fin — Sk) eXists
for all sy is fixed point, if lim,_cp(fin — Sk) =
0, nothing to prove, if lim, ep(fin —Sk) =
k,k>=0

since  p(fins1 = 5k) < P(fim — k), then
diStp(fk,n+1:Fp(Tk)) < diStp(fn' Fp(Tk))

So limy, o dist,(f,, F,(Ty)) exists, by applying
condition (I) and Theorem 1

Liy, oD (dist (fo, Fy(Ti)) <

limy, o0 dist,p(fr PpT"(fn)) =0

Since @(0) = 0, hence lim,_,cdist,(fn, Fy(Ty))
=0

By Lemma 8 lim, ,op(fin —Sk) exists, then
limy,—o0p (fin — Fp(Ty)) exists and sy, € F,(T)

Suppose that fk,nj subsequence of f; ,, and z,
sequence in F, (Ty)

1 .
Pfien = Zkn) < 55 since

lim infy, o0 disty(fin Fp(Ty)) =0
1
p(fk,nj - Zk,n) < p(fk,n - Zk,n) < Z_k

p(Z(k,n)+1 - Zk,n) < p (Z(k,n)+1 - fk,nj) +
p(fk,nj - Zk,n)

1 1
= Sk+1 + 2k
1
S 2k-1

p(z(k,n)+1 - Zk,n) — 0ask,n— o

Zn I8 p-Cauchy, FE,(Ty), Since A, condition , then
p-cauchy< p-converge,

So, z, is p-converge to F,(Ty), then p(zy, —
Sk) — 0

Now,
p (fk,nj - Sk) sp (fk,nj - Zk,n) +p(Zkn — Sk,

hence, fin p-strongly converge to fixed point sin
Fp (Tk)

By Lemma 4 f} ,, p-weakly convergence to sy
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Conclusion

The iterative scheme in Eq. 2 suggested by
double sequence, where prove later that iterative
scheme has weak convergence to the unique fixed
point as in Theorem 3 and Theorem 4. While the
iterative scheme in Eg. 2 strong and weak
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