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RESEARCH ARTICLE

New Approximating Results by Weak Convergence
of Forked Sequences

Bareq Baqi Salman *, Salwa Salman Abed

Department of Mathematics, College of Education Ibn Al-Haitham for Pure Science, University of Baghdad, Baghdad, Iraq

ABSTRACT

The modular function spaces are natural generalization of spaces like Lebesgue space, Orlicz space, Lorentz p-space,
Orlicz–Lorentz space, Musielak–Orlicz space, et al. The function modulars lack basic and flexible properties that norm
functions have, as they are functional lacks homogeneity and subadditivity and, therefore, it might be surprising to
use techniques involving asymptotic centers, normal structure and uniform convexity to obtain fixed point theorems.
The purpose of this paper is to give a new accelerated iterative algorithm for multi valued\single valued mappings
in modular function spaces and to prove some results about their convergence (strong or weak) to a fixed point (or a
common fixed point). Through the work, the modular function satisfies (UUC1) property and -condition. Sometimes the
work required the use of the Opial’s property or demi-closed condition. The intent of this manuscript is proving the
existence and uniqueness of fixed point inducing from weak convergence of a forked iterative scheme. This scheme is
constructed by five-step iterative for (λ, ρ)-firmly nonexpansive (multi\single) mappings in modular spaces with respect
to modular ρ satisfies (UUC1) property and 12-condition. To obtain these results and other finding, the definitions
of weak convergence, demi-closeness and Opial’s condition format for the case of double sequences. Note that the
authors presented a previous study on the strong convergence of forked double sequences including important results,
see references.

Keywords: Double sequence, Firmly nonexpansive, Fixed point, Strong convergence, Weak convergence

Introduction

Fixed point theory in general is a thriving field for
researchers whose purpose is to work on the exis-
tence of iterative scheme to reach the fixed point
as quickly as possible in different spaces. There are
many applied sciences as well as engineering, that
can be formulated in the form of an integral equa-
tion or differential equation, and this equation can
easily be transferred to the fixed point theory, as
here lies the importance of the fixed point topic to
prove the existence and unique of the solution.1 In
addition, the fixed point theory is included in the field
of physics, game theory and economics,2 as well as,
many researchers used fixed point theory to study the
stability of the differential equation see,3 for whoever

is looking for more applications,4 about existences
solution for differential equations. In general, to solve
fixed point problems analytically is almost impossi-
ble, therefore, resorting to the approximate solution
by using iterative scheme for, see,5 over the years the
fixed point problem has evolved and many iterative
schemes have emerged to solve the fixed point, re-
search is still ongoing in order to develop algorithms
and obtain faster and more efficient algorithms.6 The
notion of modular spaces, as a generalization of met-
ric spaces introduces by Nakano and redefined and
generalized by Musielak and Orlicz that have been
studied by many researchers.7,8 Khamsi et al.9 the
first to discuss the concept for a fixed point in modu-
lar function spaces. While Kozilowski developed the
fixed point topic extensively in modular function
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spaces see,10–12 since then the theory of fixed point
has become prevalent, culminating in the publication
when the researchers worked on the fixed point in
different spaces see.13,14 Recently, Salman and Abed
gave various results for new iterative schemes that
suitable with (λ, ρ)-firmly nonexpansive multivalued
mappings.15 Here, a five-step iterative scheme is in-
troduced that, at first glance, seems forked, but it’s
not hard. This scheme is constructed for (λ, ρ)-firmly
nonexpansive (multi\single) mappings in modular
function spaces. Many different ρ-weak convergence
results are proved for double scheme of that under
consideration.

Let � be a nonempty set and 6 be a nontrivial
σ -algebra of subsets of Lp. let ρ be a nontrivial ring
subsets of �, which means that ρ is closed with
respect to forming finite union, and countable inter-
sections and differences, Assume further that E ∩ A ∈
ρ for any E ∈ ρ and A ∈ 6, let us assume that there
exists an increasing sequence of sets Kn ∈ ρ such that
� = ∪Kn. Now E := the linear space of all simple
functions with supports from ρ and M∞ := the space
of all extended measurable functions.

In this study, Lp will be a modular function spaces
with respect to ρ ∈ < and L∗

ρ be its dual of Lp. Recall-
ing the following

Definition 1:9 If ρ is convex modular in X , then is
called modular spaces

Lρ =
{

f ∈ M : ρ
(
λ f
)
→ 0 as λ→ 0

}
The modular spaces Lp it could be in the form an

F-norm define by

‖ f‖ρ = inf
{
α > 0 : ρ

(
f
α

)
≤ α

}
If ρ is convex and modular F-norm is define

‖ f‖ρ = inf
{
α > 0 : ρ

(
f
α

)
≤ 1

}
F-norm is called Luxemburg norm.

Definition 2:15 Let ρ : M→ [0,∞] possesses the be-
low properties

1- ρ(0) = 0 if and only if, f = 0, ρ − a.e
2- ρ(α f ) = ρ( f ), for α any scalar.
3- ρ(αx+ βy) ≤ ρ(x)+ ρ(y) for every α, β ≥ 0

with α + β = 1.

ρ is called a convex modular.

Definition 3:16,17 Let ρ ∈ <

1- The sequence { fn} is called ρ-convergent to f if
ρ( fn − f )→ 0

2- A sequence { fn} is ρ-Cauchy sequence if
ρ( fn − fm)→ 0 as n,m→∞

3- A set B @ Lp is called ρ-closed if for any fn ∈ Lp
the convergence ρ( fn − f )→ 0 and f belongs
to B.

4- A set B @ Lp is called ρ-compact if every fn ∈ B,
there exists a subsequence { fnk} and f in
ρ( fnk − f )→ 0.

Definition 4:18 A duality pairing in modular function
spaces and denoted by ρ-duality pairing is define as
〈., .〉 : Lρ × L∗

ρ → R such that 〈u \ h〉 = h(u), where
u ∈ Lρ and h ∈ L∗

ρ .

Proposition 1:18 Let 〈., .〉 is the by ρ-duality pairing
on Lρ × L∗

ρ then

1- 〈αu+ βv \ h〉 = α〈u \ h〉 + β〈v \ h〉
2- 〈u \ αh1 + βh2〉 = α〈u \ h1〉 + β〈u \ h2〉

3- 〈u \ h〉 = 0 for all u ∈ Lρ , h = 0
4- 〈u \ h〉 = 0 for all h ∈ L∗ρ , u = 0.

Definition 5:18 In modular spaces let E∗
ρ the dual for

Lρ , then h : Lρ → 2L∗
ρ is called ρ-normalized duality

mapping if H(u) = {h ∈ L∗
ρ, 〈u \ h〉= ρ2(u) = ρ∗2 (u)}.

Lemma 1:7 Let {ρn}
∞

n=1, {θn}
∞

n=1 and {ζn}∞n=1 nonnegative
sequence such that

ρn+1 ≤ (1− θn) ρn + ζn

Where {θn} sequence in (0,1) and {ζn} sequence in
real number such that

∞∑
n=1

θn <∞ and
∞∑

n=1

ζn <∞, then lim
n→∞

ρn is exists.

Definition 6:19 Let ρ be a nonzero convex regu-
lar modular defined on � let r > 0, ε > 0 define
D(r, ε) = {( f, g) : f, g ∈ LP, ρ f ≤ r, ρ f − g ≥ εr}

Let ξ1(r, ε) = inf
{

1−
1
r
ρ

(
f + g

2

)
: ( f, g) ∈ D(r, ε)

}
if D(r, ε) 6= ∅ and ξ1(r, ε) = 1, If D(r, ε) = ∅

Note that, ρ satisfy (UC1) if for every r > 0, ε > 0
ξ1(r, ε) > 0 then D(r, ε) 6= ∅.
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Note that: ρ satisfy (UUC1) δ ≥ 0, ε > 0 there ex-
ists η1(r, ε) > 0 depending only on δ and ε such that
ξ1(r, ε) > η1(r, ε) > 0 for any r > δ.

Definition 7:8,20 A set E ⊂ Lp is said to be ρ-
proximinal if for each f ∈ Lp exists an element g in
E then ( f − g) = distp( f,E) = inf{ρ( f − h) : h in E}.

Here, Pp(E) denotes the family of nonempty ρ-
proximinal, ρ-bounded subset of E,

Cp(E) denotes the family of nonempty ρ-closed, ρ-
bounded subset of E,

Hp(., .)
Hp(A,B) = max {sup f∈A distp ( f,B),
supg∈B dist p (g,A)} A,B ∈ Cp(Lp)

where distp( f,B) = inf{ρ( f − g), g ∈ B}. As it is
known Hp(., .) refers to ρ-Hausdorff distance on
Cp(E).

Definition 8:21 Let ρ ∈ < then ρ has 12-condition
if sup ρ(2 fn,D)→ 0 as k→∞ and D→ ∅, and
sup ρ( fn,D)→ 0.

Lemma 2:22 Let ρ ∈ < and ρ is (UUC1), let {tn} in (0,1)
be bounded away from 0 and 1, if exists constant m > 0
such that

lim supn→∞ρ( fn) ≤ m, limsupn→∞ρ(gn) ≤ m

and limn→∞ρ(tn fn + (1− tn)gn) = m, then limn→∞
ρ( fn − gn) = 0.

Lemma 3:8 Let ρ ∈ R and A,B ∈ Pp(Lp) for each f in A
there exists g in B then ρ( f − g) ≤ Hp(A,B).

Definition 9:21
⊂ Lp, let T : E → 2E called satisfy

condition (I) if there exists no decreasing function
∅ : [0,∞)→ [0,∞) with ∅(0) = 0, ∅(r) > 0 for all
r ∈ [0,∞] and ρ( f − T f ) ≥ ∅(distρ ( f, Fp(t ))) for all
f ∈ E.

Preliminaries

Salman and Abed15 mentioned the definition of
(λ, ρ)-firmly nonexpansive mapping in multivalued
mapping for modular spaces

Definition 10: Let T : E → 2E said to be (λ, ρ)-
firmly nonexpansive multivalued mapping if for λ in
(0,1)

Hp(T f,Tg) ≤ ρ[(1− λ)( f − g)+ λ(u− v)]
u ∈ T f, v ∈ Tg.

Definition 11: A double sequence fk,n an modular
spaces in Lp is called ρ-strongly convergence to any
point z in LP, if limn→∞ ρ( fk,n − z) ≤∈, and write
fk,n → z.

Definition 12: A double sequence fk,n an modu-
lar spaces in Lp is called ρ-weakly convergence to
any point z in LP, if there exists 3 in L∗

ρ such that
limn→∞ ρ(3 fk,n −3z) ≤∈, and write fk,n ⇀ z.

Lemma 4: Let fk,n be a double sequence in modular
function spaces than every ρ-strongly convergence is ρ-
weakly convergence.

Proof: let fk,n → z and A in L∗
ρ then

lim
n→∞

ρ(3 fk,n −3z) ≤ lim
n→∞

ρ(3( fk,n − z))
≤ 3 lim

n→∞
ρ( fk,n − z)

≤ ∈

Hence, fk,n ⇀ z

Note that: The concept (λ, ρ)-firmly nonexpansive
multivalued mapping denoted by (λ, ρ)-FNMM

Definition 13: Let ρ ∈ R and E in Lp, E is called sat-
isfying ρ-Opials condition if for any double sequence
fk,n in E ρ-weakly convergence to a then for all b in E

lim
n→∞

inf ρ( fk,n − a) ≤ lim
n→∞

inf ρ( fk,n − b),

with a 6= b

The definition of demi-closeness in accordance with
the double sequences is below

Definition 14: Let ρ ∈ R and E in Lp, E and T : E →
2E said to be demi-closed with respect to b in E, if
for any double sequences fk,n in E and fk,n ρ-weakly
convergence to a and T ( fk,n) ρ-strongly convergence
to b then a in E and T (a) = b.

Or, (I − T ) is demi closed, if the double sequence
fk,n in E is ρ-weakly convergence to a in E and (I − T )
ρ-weakly convergence to 0, then (I − T )(a) = 0.

Now, define Tk : E → 2E and E nonempty convex
subset of Lp the following equation

Tk f = (1− ηk)T f + ηkw (1)

where ηk in (0,1) and f,w ∈ E.
Let T : E → 2E , and E nonempty convex subset of

Lp sequence, here, the sequence { fk,n} introduced by
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the following algorithm

uk,n =
1

n+ 1
rk,n

hk,n = (1− βn) fk,n + βnuk,n
gk,n = vk,n
Jk,n = (1− αn)gk,n + αnwk,n
fk,n+1 = mk,n, nεN

(2)

Where rk,n ∈ PTk
ρ ( fk,n), vk,n ∈ PTk

ρ (hk,n),wk,n ∈

PTk
ρ (gk,n), and mk,n ∈ PTk

ρ (Jk,n), also {αn} and {βn}

in (0,1).
In this paper study Eq. (1) when the value of w = 0.

Lemma 5: Let h : Lρ → 2L∗
ρ be the ρ-normalized dual-

ity mapping, there for any f, g ∈ E then for all h( f + g) ∈
H( f + g) then ρ2( f + g) = ρ2( f )+ ρ2(g)

Proof: by Proposition 1 and Definition 5

ρ2( f + g) = 〈 f + g \ h〉 = 〈 f \ h〉 + 〈g \ h〉
= ρ2( f )+ ρ2(g)

Lemma 6: Let h : Lρ → 2L∗
ρ be the ρ-normalized dual-

ity mapping and let f, g two function in modular spaces
if ρ( f ) ≤ ρ( f + αg) then exists h ∈ H( f ) and h(g) ≥ 0
where α in [0,1].

Proof: By Lemma 5 and Definition 5

ρ( f ) ≤ ρ( f + αg) then ρ( f )2
≤ ρ( f + αg)2

≤ ρ( f )2
+ ρ(αg)2

≤ ρ( f )2
+ αρ(g)2

So ρ( f )2
≤ ρ( f )2

+ αh(g), clear h(g) ≥ 0.

Definition 15: Let ρ ∈ <, E in Lp and E is ρ-closed
and convex said to be ρ-weakly lower semi continues
if every sequence { fk,n} in E ρ-weakly convergence to
f This implies to ρ( f ) ≤ limn→∞ in fρ( fk,n).

Lemma 7: Let ρ ∈ <, E in Lp and E is ρ-
closed and convex satisfies ρ-weakly lower semi
continues and { fk,n} sequence in E such that
limn→∞ ρ(α fk,n + (1− α)s1 − s2) exists for α ∈ [0,1]
then s1 = s2.

Proof: Let exists fk,n j, fk,nr two subsequence of fk,n
such that fk,n j → s1 and fk,nr → s2 then

α fk,n j + (1− α) s1 − s2 ⇀ s1 − s2

By ρ-is weakly lower semi continues Definition 15

ρ (s1 − s2) ≤ lim
n→∞

in fρ
(
α fk,n j + (1− α) s1 − s2

)
= lim

n→∞
in fρ

(
α( fk,n j − s1

)
+ s1 − s2)

≤ lim
n→∞

in fρ
(
α( fk,n − s1

)
+ s1 − s2)

≤ lim
n→∞

in fρ
(
α( fk,nr − s1

)
+ s1 − s2)

Let h = ( fk,nr − s1)

By Lemmas 2 to 8 there exists h ∈ H(s1 − s2) such
that h( fk,nr − s1) ≥ 0

Now, h( fk,nr − s1) = limn→∞ h(s2 − s1) = −h(s1 −

s2)
By Definition 5, then −ρ2(s1 − s2) ≥ 0, hence

ρ2(s1 − s2) ≤ 0 and s1 = s2.

Lemma 8: Let ρ ∈ < and ρ is (UUC1), 12-
condition, let E be nonempty ρ-bounded, convex and
ρ-closed, E ⊂ Lp and T, Tk : E → 2Eare (λ, ρ)-FNMM,
let { fk,n} a double sequence define by Eq. (2) then
limn→∞ ρ( fk,n − s) exists for all s fixed point.

Proof: by Eq. (2), convexity of ρ, Definition 10,
Lemma 3 implies that

ρ( fk,n+1 − s) = ρ(mk,n − s) ≤ Hp(PTk
p (Jk,n),PTk

p (s))
≤ (1− ηk)ρ(Jk,n − s) (3)

ρ(Jk,n − s) ≤ ρ((1− αn)gk,n + αnwk,n)− s)
≤ (1− αn)ρ(gk,n − s)+ αnHp(PTk

p (gk,n),PTk
p (s))

≤ [(1− αn)+ αn(1− ηk)]ρ(gk,n − s) (4)

Also,

ρ(gk,n − s) = ρ(vk,n − s) ≤ Hp(PTk
p (hk,n),PTk

p (s))
≤ (1− ηk)ρ(hk,n − s) (5)

Similarly,

ρ(hk,n − s) = ρ(βnuk,n + (1− βn) fk,n − s)

≤ βnρ

(
1

n+ 1
rk,n − s

)
+ (1− βn)ρ( fk,n − s)

≤ βnHp(PTk
p ( fk,n),PTk

p (s))+ (1− βn)ρ( fk,n − s)
≤ [βn(1− ηk)+ (1− βn)]ρ( fk,n − s) (6)

By Eqs. (3) to (6),

ρ( fk,n+1 − s) ≤ µnρ( fk,n − s)
µn = [(1− ηk)2(1− βn)(1− αn)
+ (1− ηk)3αn(1− βn)+ (1− ηk)3(1− αn)βn
+ (1− ηk)4αnβn]
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By Lemmas 1 to 7, limn→∞ρ( fk,n − s) exists for all
s ∈ Fp(T ).

Note that: limn→∞ρ( fk,n − sk) is also exists when
sk ∈ Fp(Tk) it is possible to prove it in the same way.

Results and discussion

Below ρ satisfies (UUC1) and 12-condition and E
be nonempty ρ-bounded, convex and ρ-closed E ⊂ Lp
as in (5 and6)

Theorem 1: Let ρ ∈ <, ρ is (UUC1) and 12-
condition, let E be nonempty ρ-bounded, convex and
ρ-closed E ⊂ Lp and, Tk : E → 2E , are be (λ, ρ)-
FNMM, let { fk,n} in E define by Eq. (2) then
limn→∞ distρρ( fk,n,PTk

p ( fk,n)) = 0

Proof: By Lemma 8 limn→∞ρ( fk,n − s) exists

Let limn→∞ρ( fk,n − s) = k, where k ≥ 0 (7)

By Eqs. (4) to (6) the following hold

ρ(hk,n − s) ≤ (1− ηk)ρ( fn − s) ≤ ρ( fn − s)⇒
limn→∞ ρ(hk.n − s) ≤ k (8)

lim
n→∞

ρ(gk,n − s) ≤ k (9)

lim
n→∞

ρ(Jk,n − s) ≤ k (10)

ρ(vk,n − s) ≤ Hp(PTk
p (hk,n),PTk

p (s))
≤ (1− ηk)ρ(hk,n − s) ≤ ρ( fk,n − s)

lim
n→∞

ρ(vk,n − s) ≤ lim
n→∞

ρ( fk,n − s) ≤ k
(11)

ρ(uk,n − s) ≤ Hp(PTk
p ( fk,n),PTk

p (s))
≤ (1− ηk)ρ( fk,n − s) ≤ ( fk,n − s)

then lim
n→∞

ρ(uk,n − s) ≤ k
(12)

ρ(wk,n − s) ≤ Hp(PTk
p (gk,n),PTk

p (s))
≤ (1− ηk)ρ(gk,n − s)
≤ ρ(gk,n − s) ≤ ( fk,n − s)

then lim
n→∞

ρ(wk,n − s) ≤ k
(13)

ρ(mk,n − s) ≤ Hp(PTk
p (Jk,n),PTk

p (s))
≤ (1− ηk)ρ(Jk,n − s) ≤ ρ( fk,n − s)

then lim
n→∞

ρ(mk,n − s) ≤ k
(14)

Let lim
n→∞

αn = α

ρ( fk,n+1 − s) = ρ(mk,n − s) ≤ Hp(PTk
p (Jk,n),PTk

p (s))

≤ (1− ηk)ρ(Jk,n − s) ≤ ρ(Jk,n − s)
≤ ρ(αnwk,n + (1− αn)gk,n − s)
≤ αnρ(wk,n − s)+ (1− αn)ρ(gk,n − s).

so, lim
n→∞

in fρ( fk,n+1 − s) ≤ lim
n→∞

inf[αnρ(wk,n − s)
+ (1− αn)ρ(gk,n − s)]

then, k ≤ lim
n→∞

infαnρ(wk,n − s)+ (1− α)k⇒ αk
≤ α lim

n→∞
infρ(wn − s)

hence, k ≤ lim
n→∞

infρ(wk,n − s) (15)

By Eqs. (13) and (14),

lim
n→∞

ρ(wk,n − s) = k (16)

ρ(wk,n − s) ≤ Hp(PTk
p (gk,n),PTk

p (s)) ≤ ρ(gk,n − s)
then, k ≤ ρ(gk,n − s) (17)

By Eqs. (9) and (17),

lim
n→∞

ρ(gk,n − s) = k (18)

Since, ρ(gk,n − s) = ρ(vk,n − s),
so, lim

n→∞
ρ(vk,n − s) = k (19)

ρ(vk,n − s) ≤ Hp(PTk
p (hk,n),PTk

p (s))
≤ (1− ηk)ρ(hk,n − s) ≤ ρ(hk,n − s)

lim
n→∞

ρ(vk,n − s) ≤ lim
n→∞

ρ(hk,n − s)
so, k ≤ lim

n→∞
ρ(hk,n − s)

(20)

By Eqs. (8) and (20), then

lim
n→∞

ρ(hk,n − s) = k (21)

By Eq. (21),

lim
n→∞

ρ(hk,n − s) = k⇒ lim
n→∞

ρ(βnuk,n

+ (1− βn) fk,n − s) = k
lim
n→∞

ρ(βn(rk,n − s)
+ (1− βn)( fk,n − s) = k

(22)

By Eqs. (9), (12) and (22) and Lemma 2,
limn→∞ ρ( fk,n − uk,n) = 0 then uk,n ∈ PTk

p ( fk,n). Since
distρρ( fk,n,PTk

p ( fn)) ≤ limn→∞ ρ( fk,n − uk,n), limn→∞

distρρ( fk,n,PTk
p ( fk,n)) = 0. This completes the proof.

Theorem 2: Let, Tk : E → 2E , are be (λ, ρ)-FNMM,
let { fk,n} in E define by Eq. (2) and s1, s2 fixed point of
T in E then limn→∞ ρ(α fk,n + (1− α)s1 − s2) exists.
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Proof: To prove limn→∞ ρ(α fk,n + (1− α)s1 − s2)
exists

Let γk,n(α) = ρ(α fk,n + (1− α)s1 − s2)

γn(0) = (s1 − s2), γn(1) = ( fk,n − s2)

Define Rn : E → 2E for all n ∈ N

Rn( fk,n) = PTk
p [(1− αn) fk,n + αnuk,n] = PTk

p (hk,n) = vk,n
ρ(Rn( fk,n,1)− Rn( fk,n,2)) = ρ(vk,n,1 − vk,n,2)

By Lemma 3

≤ Hp(PTk1
p (hk,n,1),PTk2

p (hk,n,2))
≤ ρ(hk,n,1 − hk,n,2) (23)

By Definition 3, convexity of ρ, and Lemmas 2
and 3, hence

ρ(hk,n,1 − hk,n,2) = ρ[(1− βn) fk,n,1 +
βn

n+ 1
rk,n,1

− (1− βn) fk,n,2 +
βn

n+ 1
rk,n,2

≤ (1− βn)( fk,n,1 − fk,n,2)+ βn(rk,n,1 − rk,n,2)
≤ (1− βn)( fk,n,1 − s)+ (1− βn)( fk,n,2 − s)
+ βn(rk,n,1 − s)+ βn(rk,n,2 − s)
≤ (1− βn)( fk,n,1 − s)+ (1− βn)( fk,n,2 − s)
+ βnHp(PTk1

p ( fk,n,1), PTk1
p (s))

+ βnHp(PTk2
p ( fk,n,2), PTk2

p (s))
≤ ( fk,n,1 − s)+ ( fk,n,2 − s) (24)

Let

I(k,n)m = R(k,n)+m R(k,n)+m−1 R(k,n)+m−2 · · · R(k,n)

And

I(k,n)m( fk,n) = f(k,n)+m, I(k,n)m(s) = s

By Eqs. (23) and (24) and convexity of ρ become

ρ(I(k,n)m( fk,n,1)−I(k,n)m( fk,n,2))≤ρ(I(k,n)m( fk,n,1)−s)
+ ρ(I(k,n)m( fk,n,2)− s)
≤ ( fk,n,1 − s)+ ( fk,n,2 − s) (25)

Let

b(k,n)m = ρ(I(k,n)m(α fk,n + (1− α)s1)− (αI(k,n)m( fk,n)
+ (1− α)s1))for all k, n,m ∈ N

By convexity of ρ

b(k,n)m = ρ(I(k,n)m[α fk,n + (1− α)s1]− s1)
− ρ(αI(k,n)m( fk,n)+ (1− α)s1 − s1))
≤ ρ(α fk,n − αs1)− ρ(α fk,n − αs1) = 0

(26)

Now,

γ(k,n)+m = ρ(α f(k,n)+m + (1− α)s1 − s2)
= ρ(αI(k,n)m f(k,n) + (1− α)s1 − s2)
= ρ(αI(k,n)m f(k,n) + (1− α)s1 − s2 + I(k,n)m[α f(k,n)
+ (1− α)s1]− I(k,n)m[α f(k,n) + (1− α)s1])
≤ b(k,n)m + ρ(I(k,n)m[α f(k,n) + (1− α)s1]− s2)
≤ b(k,n)m + ρ(α f(k,n) + (1− α)s1 − s2)
= b(k,n)m + γk,n(α)

Then γ(k,n)+m(α) ≤ γk,n(α)
So, limn→∞ γ(k,n)+m(α) ≤ limn→∞ γk,n(α)
Hence, limn→∞ ρ(α fk,n + (1− α)s1 − s2) exists.

Theorem 3: Let ρ ∈ < satisfy (I − T ) dim closed, let
E be ρ-compact satisfying ρ-Opials condition and, Tk :
E → 2E , be (λ, ρ)-FNMM, then { fk,n} in E define by
Eq. (2) ρ-weakly convergence to s, for s unique fixed
point of T in E.

Proof: s ∈ Fp(T ), by Lemma 8 limn→∞ ρ( fk,n − s)
exists

Since E is ρ-compact fk,n has two convergence sub-
sequence fk,n j, fk,nr

Let fk,n ρ-weakly convergence to s1 and s2
s1, s2 in E weak limit of fk,n j and fk,nr, (I − T ) dim

closed at zero
(I − T )(s1) = 0 then T (s1) = s1, s1 ∈ Fp(T )
Similarity (I − T )(s2) = 0 then T (s2) = s2, s2 ∈

Fp(T )
To prove s1 = s2
Assume that s1 6= s2, by ρ-Opials condition

lim
n→∞

ρ( fk,n − s1) = lim
n→∞

ρ( fk,n j − s1)
≤ lim

n→∞
ρ( fk,n j − s2) ≤ lim

n→∞
ρ( fk,n − s2)

= lim
n→∞

ρ( fk,nr − s2)
≤ lim

n→∞
ρ( fk,nr − s1)

= lim
n→∞

ρ( fk,n − s1).

Contradiction, then s1 = s2, so, fk,n ρ-weakly con-
vergence to unique fixed point s1 for T in E.

Theorem 4: Let ρ ∈ < and (I − T ) dim closed at zero
let E be ρ-compact satisfying ρ-weakly lower semi contin-
ues and, Tk : E → 2E , are be (λ, ρ)-FNMM, then { fk,n}
in E define by Eq. (2) ρ-weakly convergence to s, for s
unique fixed point of T in E.

Proof: Let fk,n ρ-weakly convergence to s1 and s2
(I − T ) dim closed at zero
(I − T )(s1) = 0 then T (s1) = s1, s1 ∈ Fp(T ), Similar-

ity (I − T )(s2) = 0 then T (s2) = s2, s2 ∈ Fp(T )
Since E is ρ-compact, fk,n has subsequence fk,n j ρ-

weakly convergence to s1.
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fk,n has another subsequence fk,nr ρ-weakly conver-
gence to s2

By Theorem 2 limn→∞ ρ(α fk,n + (1− α)s1 − s2)
exists

And by Lemma 7 s1 = s2
Then fk,n ρ-weakly convergence to unique fixed

point s1 for T in E.

Theorem 5: Let, Tk : E → 2E , are (λ, ρ)-FNMM and
satisfy condition (I), then { fk,n} in E defined by Eq. (2)
ρ-weakly convergence to sk, for all sk fixed point of Tk
in E.

Proof: By Lemma 8 limn→∞ρ( fk,n − sk) exists for all
sk is fixed point, if limn→∞ρ( fk,n − sk) = 0, nothing to
prove, if limn→∞ρ( fk,n − sk) = k, k ≥ 0

Since ρ( fk,n+1 − sk) ≤ ρ( fk,n − sk), then
distρ ( fk,n+1, Fp(Tk)) ≤ distρ ( fn, Fp(Tk))

So limn→∞distρ ( fn, Fp(Tk)) exists, by applying con-
dition (I) and Theorem 1

limn→∞∅(distρ ( fn, Fp(Tk))
≤ limn→∞ distρρ( fn,PTk

p ( fn)) = 0

Since ∅(0) = 0, hence limn→∞distρ ( fn, Fp(Tk)) = 0
By Lemma 8 limn→∞ρ( fk,n − sk) exists, then

limn→∞ρ( fk,n − Fp(Tk)) exists and sk ∈ Fp(Tk)
Suppose that fk,n j subsequence of fk,n, and zk,n se-

quence in Fp(Tk)

ρ( fk,n − zk,n) ≤
1
2k

since lim in fn→∞ distp( fk,n, Fp(Tk)) = 0

ρ( fk,n j − zk,n) ≤ ρ( fk,n − zk,n) ≤
1
2k

ρ(z(k,n)+1 − zk,n) ≤ ρ(z(k,n)+1 − fk,n j )+ ρ( fk,n j − zk,n)

≤
1

2k+1 +
1
2k

≤
1

2k−1
ρ(z(k,n)+1 − zk,n)→ 0 as k, n→∞

zk,n is ρ-Cauchy, Fp(Tk), Since 12 condition, then
ρ-cauchy⇔ ρ-converge,

So, zk,n is ρ-converge to Fp(Tk), then ρ(zk,n − sk)→
0

Now,

ρ( fk,n j − sk) ≤ ρ( fk,n j − zk,n)+ ρ(zk,n − sk),

hence, fk,n ρ-strongly converge to fixed point skin
Fp(Tk)

By Lemma 4 fk,n ρ-weakly convergence to sk

Conclusion

The iterative scheme in Eq. (2) suggested by double
sequence, where prove later that iterative scheme has

weak convergence to the unique fixed point as in The-
orems 3 and 4. While the iterative scheme in Eq. (2)
strong and weak convergence to fixed point provided
that the Condition (I) as in Theorem 5, it is possible
for researchers to deal with this iterative scheme with
different class of mapping and reach the results.
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ةبعشتمتاعباتتملفیعضلابراقتلاةطساوبةدیدجةیبیرقتجئاتن

دبعناملسىولس،ناملسيقابقراب

.قارعلا،دادغب،دادغبھعماج،)مثیھلانبا(ةفرصلامولعللةیبرتلاھیلك،تایضایرلامسق

ةصلاخلا

LorentzءاضفوOrliczءاضفوLebesgueءاضفلثمتاءاضفلاضعبليعیبطمیمعتيھةیرایعملاتاءاضفلاربتعت Pءاضفو

Orlicz-LorentzءاضفوMusielak-Orliczلاوداھكلتمیيتلاةنرملاوةیساسلأاصئاصخلاىلارقتفتةیرایعملالاودلا.اھریغو

زكارمنمضتتتاینقتمادختساىلعنورداقنوكنناشھدملانمنوكیدقيلاتلابويعرفلاطبارتلاوسناجتلاىلارقتفتلاوداھنلأ.رایعملا

ھیراركتھیمزراوخءاطعاوھةقرولاهذھنمضرغلا.هدماصلاھطقنلاتایرظنىلعلوصحللمظتنملابدحتلاويعیبطلالكیھلا,براقتلا

هدماصھطقنعم)يوق-فیعض(اھبراقتلوحجئاتنلاضعبتابثاورلدومتاءاضفيفةدحاولاةمیقلاتاذ-میقلاةددعتمقیبطتللةعرسمهدیدج

ھیصاخلمعلابلطتینایحلااضعبيفو2∆طرشكلذكو(UUC1)ققحترلدومتاءاضفلمعلاللاخنم)ھكرتشمهدماصھطقنوا(

يراركتططخملفیعضلابراقتلانعةجتانلاةدماصلاطاقنللةینادحولاودوجولاتابثاوھثحبلااذھنمفدھلا.قلاغنلااھبشولیبوأ

و.رلدومءاضفيفهوقب)ھیداحاوةددعتم(ةدتممریغلاود-(λ,ρ)لھیراركتتاوطخھسمخللاخنمططخملااذھءاشنامت.بعشتم

ρققحت(UUC1)طرشوΔ2-.فیعضلابراقتلايھفیراعتلانیبتاقیسنتءارجأبموقن,ىرخلااقئاقحلاوجئاتنلاهذھىلعلوصحلل,

ةبعشتمةجودزمتاعباتتمليوقلابراقتلالوحةقباسةسارداومدقنیفلؤملانأظحلا.ةجودزملاتاعباتتملاھلاحللیبواطرشو,برقلاھبش

.رداصملاعجار,ةمھمجئاتنةنمضتم

.ةدماصلاھطقنلا،يوقبراقت،فیعضبراقت،ةدشبةدتممریغلاود،ةجودزمةعباتتم:ةیحاتفملاتاملكلا
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