A New Invariant Regarding Irreversible k-Threshold Conversion Processes on Some Graphs

Ramy Shaheen (D), Suhail Mahfud (D), Ali Kassem* (D)
Department of Mathematics, Faculty of Science, Tishreen University, Lattakia, Syria.
*Corresponding Author.

Received 15/06/2023, Revised 22/01/2023, Accepted 24/01/2023, Published Online First 20/03/2024

© 2022 The Author(s). Published by College of Science for Women, University of Baghdad.
This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

An irreversible k-threshold conversion (k-conversion in short) process on a graph $G=(V, E)$ is a specific type of graph diffusion problems which particularly studies the spread of a change of state of the vertices of the graph starting with an initial chosen set while the conversion spread occurs according to a pre -determined conversion rule. Irreversible k-conversion study the diffusion of a conversion of state (from 0 to 1) on the vertex set of a graph $G=(V, E)$. At the first step $t=0$, a set $S_{0} \subseteq V$.is selected and for $t \in\{1,2, \ldots,\} ; S_{t}$ is obtained by adding all vertices that have k or more neighbors in S_{t-1} to S_{t-1}. S_{0} is called the seed set of the process and a seed set is called an irreversible k-threshold conversion set (IkCS) of G if the following condition is achieved: Starting from S_{0} and for some $t \geq 0 ; S_{t}=V(G)$. The minimum cardinality of all the IkCSs of G is called the k- conversion number of G (denoted as $\left(C_{k}(G)\right)$. In this paper, a new invariant called the irreversible k -threshold conversion time (denoted by $\left(C T_{k}(G)\right)$ is defined. This invariant retrieves the minimum number of steps (t) that the minimum IkCS needs in order to convert $V(G)$ entirely. $C T_{k}(G)$ is studied on some simple graphs such as paths, cycles and star graphs. $C_{k}(G)$ and $C T_{k}(G)$ are also determined for the tensor product of a path P_{m} and a cycle C_{n} (which is denoted by $P_{m} \times C_{n}$) for some values of k, m, n. Finally, $C_{k}(G)$ of the Ladder graph L_{n} is determined for $n \geq 2$.

Keywords: Graph conversion process, k-Threshold conversion number, k-Threshold conversion time, Ladder graph, Seed set, Tensor product.

AMS Subject Classification: 68R10, 05C69, 05C90

Introduction

Let $G(V, E)$ be a graph with $|V|=n$ vertices and $|E|=m$ edges. The open neighborhood of a vertex $v \in V$ is $N(v)=\{u \in V: u v \in E\}$ and the closed neighborhood of v is $N[v]=N(v) \cup\{v\}$. The degree of a vertex v (denoted by $\operatorname{deg}(v)$) is the number of all vertices that are adjacent to v. Therefore, $\quad \operatorname{deg}(v)=|N(v)|$ while $\quad \Delta(G)=$ $\max \{\operatorname{deg}(v): v \in V(G)\}$.

The distance $d(u, v)$ between two vertices u and v of a finite graph is the minimum length of the paths connecting them ${ }^{1}$. The diameter of a graph (denoted by $\operatorname{diam}(G))$ is the length $\max _{u, v} d(u, v)$ between any two vertices u and v of the graph ${ }^{2}$. For any undefined term in this paper, Bickle 3 is recommended.

An independent vertex set of a graph $G(V, E)$ is a subset of V such that no two vertices in the subset represent an edge of G. The independence number, denoted by $\alpha(G)$, is the cardinality of the largest independent vertex set of G.

An Irreversible k-threshold conversion process on a graph G is a sequence of subsets S_{0}, S_{1}, \ldots of $V(G)$ such that for $t=1,2, \ldots$,

$$
S_{t}=S_{t-1} \cup\left\{v \in V-S_{t-1}:\left|N(v) \cap S_{t-1}\right| \geq k\right\}
$$

The set S_{0} is called the seed set for the process, and if $S_{t}=V(G)$ for some finite t then the seed set is called an irreversible k-threshold conversion set (IkCS) of G.

Vertices in S_{t} are called "converted" and vertices in $V-S_{t}$ are called "unconverted", and if a vertex v belongs to both $V-S_{t-1}$ and S_{t}, then v is said to be "converted at time t ". The minimum cardinality of all the IkCSs of G is called the k- conversion number of G (denoted as $\left(C_{k}(G)\right)$. It is obvious that $C_{1}(G)=1$ for connected graphs.

The problem was introduced for the first time by Dreyer in his doctoral dissertation. Dreyer and Roberts ${ }^{4}$ found $C_{2}(G)$ for trees. The problem then was further studied by Wodlinger ${ }^{5}$, Mynhardt et al. ${ }^{6}$, and Shaheen et al. ${ }^{7}$.

The tensor product ${ }^{8}$ of a path P_{m} and a cycle C_{n} (denoted by $\left.P_{m} \times C_{n}\right)$ has the vertex set $V\left(P_{m} \times\right.$ $\left.C_{n}\right)=\{(i, j): 1 \leq i \leq m, 1 \leq j \leq n\} \quad$ when $(i, j),(l, \mathrm{r})$ are adjacent if $(i, l) \in E\left(P_{m}\right)$ and $(j, r) \in$ $E\left(C_{n}\right)$. The Ladder graph L_{n} is the cartesian product $P_{n} \square P_{2}{ }^{9}$.

In this paper, a new invariant called the irreversible k-threshold conversion time (denoted by $\left(C T_{k}(G)\right)$ is defined. This invariant retrieves the minimum number of steps (t) that the minimum IkCS needs in order to convert $V(G)$ entirely. $C T_{k}(G)$ is studied on some simple graphs such as the path P_{n}, the cycle C_{n} and the star graph $K_{1, n}$. Then $C_{k}\left(P_{m} \times C_{n}\right)$ and $C T_{k}\left(P_{m} \times C_{n}\right)$ are determined for some values of k, m, n. Finally, $C T_{k}(G)$ of the Ladder graph L_{n} is determined for $n \geq$ 2.

The two following Theorems are preliminary work that is used in the proofs later in this paper:

Theorem 13: For $m \geq 2$ and $n \geq 3$: $\alpha\left(P_{m}\right)=\left\lceil\frac{m}{2}\right\rceil$; $\alpha\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$.

Theorem 2^{10} : If G, H are either a path or a cycle; $\alpha(G \times H)=\max \{\alpha(G)|V(H)|, \alpha(H)|V(G)|\}$.

Theorem 34: For $m \geq 2$ and $n \geq 3: C_{2}\left(P_{m}\right)=$ $\left\lceil\frac{m+1}{2}\right\rceil ; C_{2}\left(C_{n}\right)=\left\lceil\frac{n}{2}\right\rceil$.

Definition 15: A nonempty set U of vertices of G is k-immune if, for all $v \in V,|N(v)-U|<k$.

The following are some helpful notes for better understanding of the next section of the paper:

Note 1: As an immediate consequence of the definition of IkCS, $C_{k}(G) \geq k$ for any graph G.

Note 2: As an immediate consequence of the definition of IkCS, when studying an Irreversible kthreshold conversion process on a graph $G=(V, E)$ all vertices $\{v \in V ; \operatorname{deg}(v)<k\}$ must be included in the seed set S_{0}, otherwise the process will fail because none of these vertices can satisfy the conversion rule. These vertices are called k-immune vertices ${ }^{7}$.

Note 3: It is obvious that a k-threshold conversion process fails if there exists a k-immune set (U) for which $U \cap S_{0}=\emptyset$.

Note 4: Throughout this paper, the rows of $P_{m} \times C_{n}$ are denoted by $R_{i}: 1 \leq i \leq m$ and $R_{l}=\{(l, j): 1 \leq$ $j \leq n\}$. Meanwhile, the columns are denoted by $C O_{j}: 1 \leq j \leq n ; \quad C O_{l}=\{(i, l): 1 \leq i \leq m\} . \quad$ The same notations are used for the ladder graph L_{n}.

Note 5: In every figure of this article, the black color is assigned to the converted vertices while the white color is assigned to the unconverted ones. All edges that extend beyond the border of the $P_{m} \times C_{n}$ grid are assumed to wrap around to the opposite side.

Results and Discussion

Remark 1: In this paper, optimization is used for two parameters (the size of the seed set and the number of steps). However, these two parameters are not equally important. The priority is always to minimize the seed set S_{0} (by determining $C_{k}(G)$), then the parameter $C T_{k}(G)$ retrieves the minimum number of steps of all the processes initiated by seed sets of cardinality $C_{k}(G)$.

Definition 2: Let S_{0} be an IkCS of a graph $G=$ (V, E). The time of the irreversible k-Threshold process that is initiated by S_{0} is the number of steps needed for the conversion to reach every vertex of $V(G)$ starting from S_{0}.

Definition 3: The irreversible k-Threshold conversion time of a graph G (denoted by $C T_{k}(G)$) is the minimum time of all IkCSs with cardinality $C_{k}(G)$ of G.

Proposition 1: For any graph $G=(V, E)$ with $|V|=$ n and for any non-trivial conversion threshold $(1 \leq k \leq \Delta(G))$, the irreversible k-Threshold conversion time $C T_{k}(G)$ is well defined because it is bounded by the following lower and upper bounds:
$1 \leq$

$$
\begin{gathered}
C T_{k}(G) \leq n-k \\
1
\end{gathered}
$$

Proof:

Due to the definition of Irreversible k-threshold conversion processes, the following remarks can be made:
i. $\quad C T_{k}(G) \geq 1$ because when $k \leq \Delta(G), S_{0} \neq$ $V(G)$ when $\left|S_{0}\right|=C_{k}(G)$.
ii. $\quad C T_{k}(G) \leq n-k$ because the process fails if there exists a step t for which $S_{\mathrm{t}}=S_{\mathrm{t}-1} \neq$ $V(G)$, therefore it is necessary to add at least one vertex to S_{0} during every step of the process, but considering that $\left|S_{0}\right| \geq k$, then $\left|S_{1}\right| \geq k+1 ; \quad\left|S_{2}\right| \geq k+2 \quad$ and \quad the argument applies for any step t which means:
For any step $1 \leq t \leq C T_{k}(G) ;\left|S_{\mathrm{t}}\right| \geq k+t$
Therefore, $\left|S_{C T_{k}(G)}\right| \geq k+C T_{k}(G)$.
However, $S_{C T_{k}(G)}=V(G)$ which means

$$
\begin{aligned}
& |V(G)| \geq k+C T_{k}(G), \text { thus } C T_{k}(G) \leq n- \\
& k .
\end{aligned}
$$

From i and ii the requested is concluded. \square
Proposition 2: For any connected graph $G=$ $(V, E) ; C T_{k}(G)=1$ when $k=\Delta(G)$.

Proof:

Since all vertices of degree $\operatorname{deg}(v)<\Delta(G)$ are kimmune, they must be included in the seed set S_{0} or else the process automatically fails. Let a and b be two adjacent vertices from $V(G)$ with $\operatorname{deg}(a)=$ $\operatorname{deg}(b)=\Delta(G)$. If neither a nor b belongs to S_{0}, then $\{a, b\}$ forms an unconvertable set because neither a nor b can be adjacent to k converted vertices at any step of the process. This means that there cannot be two adjacent vertices of $V-S_{0}$. Therefore, for any vertex $x \in V(G)$ the following cases must be considered:

Case 1: $\operatorname{deg}(x)<\Delta(G)$. This means $x \in S_{0}$.
Case 2: $\operatorname{deg}(x)=\Delta(G)$. Then following two subcases must be discussed:

Case 2.a: $x \in S_{0}$.
Case 2.b: $x \notin S_{0}$ and x is adjacent to k vertices from S_{0}. Therefore, x satisfies the conversion rule and is converted at step $t=1$.

From the previous cases; $V(G)$ is entirely converted at the end of step $t=1$. Therefore, $C T_{k}(G)=1 . \square$

Observation 1: As an immediate consequence of Proposition $2, C T_{k}(G)=1$ for all k-regular graphs.

Observation 2: For all connected graphs, $C T_{1}(G) \leq$ $\operatorname{diam}(G)$.

Observation 3:

1. $C T_{1}\left(P_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$. Where P_{n} is the path graph of order $n \geq 2$ and $S_{0}=\left\{a_{\left[\frac{n+1}{2}\right]}\right\}$.
2. $C T_{1}\left(C_{n}\right)=\left\lfloor\frac{n}{2}\right\rfloor$. Where C_{n} is the cycle graph of order $n \geq 3$. S_{0} contains only one arbitrary vertex.
3. $C T_{1}\left(K_{1, n}\right)=1$. Where $K_{1, n}$ is the star graph of order $n \geq 3$ and S_{0} contains only the central vertex (the vertex of degree).

Proposition 3: For $n \geq 3$:
i. $\quad C_{k}\left(P_{2} \times C_{n}\right)=\left\{\begin{array}{l}1 \text { if } k=1 \text { and } n \text { is odd; } \\ 2 \text { if } k=1 \text { and } n \text { is even; } \\ n \text { if } k=2 .\end{array}\right.$
ii. $\quad C T_{k}\left(P_{2} \times C_{n}\right)=$
$\left\{\begin{array}{l}n \text { if } k=1 \text { and } n \text { is odd; } \\ \frac{n}{2} \text { if } k=1 \text { and } n \text { is even; } \\ 1 \text { if } k=2 .\end{array}\right.$
Proof: The following cases for k should be considered:

Case 1: $k=1$. Let us consider the following subcases for n :

Case 1.a: n is odd. Therefore, $P_{2} \times C_{n}$ is isomorphic to a cycle $C_{2 n}$. This means:

- $C_{1}\left(P_{2} \times C_{n}\right)=1$ since $P_{2} \times C_{n}$ is connected.
- $C T_{1}\left(P_{2} \times C_{n}\right)=n$ by Observation 3 .

Case 1.b: n is even. Therefore, $P_{2} \times C_{n}$ is isomorphic to the sum of two cycles $C_{n}^{\prime}+C_{n}^{\prime \prime}$ defined as:

$$
\begin{aligned}
& C_{n}^{\prime}=\left\{(1,2 i+1),(2,2 j): 0 \leq i \leq \frac{n}{2}-1 ; 1 \leq j\right. \\
& \left.\quad \leq \frac{n}{2}\right\} \\
& C_{n}^{\prime \prime}=\left\{(1,2 j),(2,2 i+1): 0 \leq i \leq \frac{n}{2}-1 ; 1 \leq j\right. \\
& \left.\quad \leq \frac{n}{2}\right\}
\end{aligned}
$$

This means $S_{0}=\left\{x, y: x \in C_{n}^{\prime}\right.$ and $\left.y \in C_{n}^{\prime \prime}\right\}$ which makes $C_{1}\left(P_{2} \times C_{n}\right)=2$. Since the conversion processes run separately on C_{n}^{\prime} and $C_{n}^{\prime \prime}$, then
$C T_{1}\left(P_{2} \times C_{n}\right)=C T_{1}\left(C_{n}^{\prime}\right)=C T_{1}\left(C_{n}^{\prime \prime}\right)=\left\lfloor\frac{n}{2}\right\rfloor=\frac{n}{2}$.
Case 2: $k=2$. In a similar way to Case 1 both subcases for n are considered as follows:

Case 2.a: n is odd. Since $P_{2} \times C_{n}$ is isomorphic to a cycle $C_{2 n}$, then:

- $\quad C_{2}\left(P_{2} \times C_{n}\right)=C_{2}\left(C_{2 n}\right)=n$ by Theorem 3.
- $C T_{2}\left(P_{2} \times C_{n}\right)=C T_{2}\left(C_{2 n}\right)=1 \quad$ by

Observation 1 since $C_{2 n}$ is 2-regular.

Case 2.b. n is even. Since $P_{2} \times C_{n}$ is isomorphic to the sum of two cycles $C_{n}^{\prime}+C_{n}^{\prime \prime}$, then:

- $C_{2}\left(P_{2} \times C_{n}\right)=2 C_{2}\left(C_{n}\right)=2\left(\frac{n}{2}\right)=n \quad$ by Theorem 3.
- $C T_{2}\left(P_{2} \times C_{n}\right)=C T_{2}\left(C_{n}^{\prime}\right)=C T_{2}\left(C_{n}^{\prime \prime}\right)=1$ by Observation 1 because $C_{n}^{\prime}, C_{n}^{\prime \prime}$ are 2 regular.
From the previous cases and sub-cases, the requested is proven.

Proposition 4: For $n \geq 3$:
i. $\quad C_{2}\left(P_{3} \times C_{n}\right)=n$.
ii. $\quad C T_{2}\left(P_{3} \times C_{n}\right)=1$.

Proof: It is obvious that $V\left(P_{3} \times C_{n}\right)$ can be divided based on vertex degree into two subsets:

$$
\begin{gathered}
Q_{1}=\{v \in V ; \operatorname{deg}(v)=2\} \\
=\{(1, j),(3, j): 1 \leq j \leq n\} \\
Q_{2}=\{v \in V ; \operatorname{deg}(v)=4\}=\{(2, j): 1 \leq j \leq \\
n\}
\end{gathered}
$$

For $1 \leq j \leq n$ let us define some special sets on $P_{3} \times$ C_{n} as:

$$
\begin{aligned}
W_{j} & =\{(1, j-1),(1, j+1),(2, j),(3, j-1)\} \\
X_{j} & =\{(1, j-1),(1, j+1),(2, j),(3, j+1)\} \\
Y_{j} & =\{(1, j-1),(2, j),(3, j-1),(3, j+1)\} \\
Z_{j} & =\{(1, j+1),(2, j),(3, j-1),(3, j+1)\}
\end{aligned}
$$

Each version of any of these sets cannot be converted at any step if it does not contain at least one vertex of S_{0} because it consists of:

- three vertices of degree 1 that are adjacent to one vertex of the same set.
- One vertex of degree 4 that is adjacent to three vertices of the same set.

Fig 1 shows that W_{3}, X_{3}, Y_{3} and Z_{3} are 2-immune on $P_{3} \times C_{5}$. (In Fig 1 the vertices of W_{3} are denoted by $\left\{w_{1}, w_{2}, w_{3}, w_{4}\right\}$ and the same notation style is used
for X_{3}, Y_{3} and Z_{3}). Since for all $w \in W, \mid N(w)-$ $W \mid<2=k$; then these sets are 2-immune

Figure 1. 2-immune sets W_{3}, X_{3}, Y_{3} and Z_{3} on $P_{3} \times C_{5}$.

Let us now try to distribute only three vertices from S_{0} on the four columns $\mathrm{CO}_{4}, \mathrm{CO}_{5}, \mathrm{CO}_{6}, \mathrm{CO}_{7}$ of $\mathrm{P}_{3} \times$ C_{10} without leaving any unconverted version of $W_{j}, X_{j}, Y_{j}, Z_{j}: j \in\{5,6\}$. The following cases are considered:

Case 1: $(2,5),(2,6) \notin S_{0}$. Let $(1,4),(3,4),(1,7) \in$ S_{0}. This would leave $Y_{6} \cap S_{0}=\emptyset$ and since Y_{6} is 2immune, then and the process fails. Without loss of generality, a 2 -immune set will be left if neither $(2,4),(2,5)$ is included in S_{0}.

Case 2: Only one of $(2,5),(2,6)$ belongs to S_{0}. Let us assume that $(2,5) \in S_{0}$ taking into consideration that without loss of generality, the same argument applies if $(2,6) \in S_{0}$. Since $(2,5) \in S_{0}$, this leaves two converted vertices to be distributed in a way that does not leave any of $W_{6}, X_{6}, Y_{6}, Z_{6}$ unconverted. This is achievable if the two converted vertices were two vertices from $\{(1,5),(1,7),(3,5),(3,7)\}$.

Let us discuss the possibilities of the two chosen converted vertices in regards to the following sets:
$B_{1}=\{(1,5),(2,4)\}, B_{2}=\{(2,4),(3,5)\}, B_{3}=$ $\{(1,6),(2,7)\}, B_{4}=\{(2,7),(3,6)\}$.

Case 2.a: The two converted vertices are $(1,5),(3,5)$. This would prevent leaving any of $W_{6}, X_{6}, Y_{6}, Z_{6}$ unconverted. However, it would also leave B_{3}, B_{4} fully unconverted, this means both $(1,8),(3,8)$ need to be included in S_{0} to avoid having unconverted $W_{7}, X_{7}, Y_{7}, Z_{7}$.Therefore, 5 vertices
from the 5 columns $C O_{j}: 4 \leq j \leq 8$ must be included in S_{0} or else the process automatically fails.

Case 2.b: Only one of the two chosen converted vertices belongs to $\{(1,5),(3,5)\}$, if it is $(1,5)$, then B_{2}, B_{3}, B_{4} are all left unconverted therefore in addition to $(1,8),(3,8)$ this means one vertex from $\{(1,3),(3,3)\}$ must be included in S_{0} to avoid leaving Y_{4} unconverted. Therefore, 6 vertices from the 6 columns $C O_{j}: 3 \leq j \leq 8$ should be included in S_{0} or else the process automatically fails. Without loss of generality, the same result is obtained if $(3,5) \in S_{0}$.

Case 2.c: In order to prevent leaving any of $B_{1}, B_{2}, B_{3}, B_{4}$ entirely unconverted, the two chosen converted vertices should be (2,4), $(2,7)$. However, that would leave $W_{6}, X_{6}, Y_{6}, Z_{6}$ unconverted and the process automatically fails.

From all the cases and subcases and without loss of generality it can be concluded that the $n-2$ columns $C O_{j}: 2 \leq j \leq n-1$ must include n vertices of S_{0}, and since $(2,1)$ is adjacent to each of $(1, n),(3, n)$ while $(2, n)$ is adjacent to each of $(1,1),(3,1)$, then the same argument applies to $C O_{1}$ and $C O_{n}$. Therefore:
$C_{2}\left(P_{3} \times C_{n}\right) \geq n$ 2

Let the seed set be $S_{0}=\{(2, j): 1 \leq j \leq n\}$ which is of cardinality n. The process goes as follows:
$t=0: S_{0}=\{(2, j): 1 \leq j \leq n\}$.
$t=1: S_{1}=S_{0} \cup\{(1, j),(3, j): 1 \leq j \leq n\}=$ $V\left(P_{3} \times C_{n}\right)$. This means S_{0} is an I2CS on $P_{3} \times C_{n}$ and $C_{2}\left(P_{3} \times C_{n}\right) \leq n$. From 2 it can be concluded that $C_{2}\left(P_{3} \times C_{n}\right)=n$ for $n \geq 10$. However, since $(2,1)$ is adjacent to each of $(1, n),(3, n)$ while $(2, n)$ is adjacent to each of $(1,1),(3,1)$, then the same argument applies for all values of $n \geq 3$. Therefore: $C_{2}\left(P_{3} \times C_{n}\right)=n$ for $n \geq 10$, which means $C T_{2}\left(P_{3} \times C_{n}\right) \leq 1$, but since $S_{0} \neq V\left(P_{3} \times C_{n}\right)$ then $C T_{2}\left(P_{3} \times C_{n}\right) \geq 1$ which means $C T_{2}\left(P_{3} \times C_{n}\right)=1$ for $n \geq 3$.

From all the above the requested is concluded. \square
Proposition 5: For $n \geq 3$:
i. $\quad C_{3}\left(P_{3} \times C_{n}\right)=2 n$.
ii. $\quad C T_{3}\left(P_{3} \times C_{n}\right)=1$.

Proof: It is obvious that all vertices of Q_{1} are 3immune therefore they must be included in S_{0} which means $C_{3}\left(P_{3} \times C_{n}\right) \geq\left|Q_{1}\right|=2 n$. Let $S_{0}=Q_{1}=$ $\{(1, j),(3, j): 1 \leq j \leq n\}$ be the seed set, then $S_{1}=$ $S_{0} \cup Q_{1}=V\left(P_{3} \times C_{n}\right)$. This means S_{0} is an I3CS on $P_{3} \times C_{n}$ and $C_{3}\left(P_{3} \times C_{n}\right) \leq 2 n$. Therefore, $C_{3}\left(P_{3} \times\right.$ C_{n}) $=2 n$.

It can also be concluded that $C T_{3}\left(P_{3} \times C_{n}\right) \leq 1$ and since $S_{0} \neq V\left(P_{3} \times C_{n}\right)$, then $C T_{3}\left(P_{3} \times C_{n}\right) \geq 1$ which means $C T_{3}\left(P_{3} \times C_{n}\right)=1$. From all the above the requested is proven.

Proposition 6: For $n \geq 3$:
i. $\quad C_{3}\left(P_{4} \times C_{n}\right)=\left\{\begin{array}{l}2 n+1 \text { if } n \text { is odd } ; \\ 2 n+2 \text { if } n \text { is even } .\end{array}\right.$
ii. $\quad C T_{3}\left(P_{4} \times C_{n}\right)=\left\{\begin{array}{l}n \text { if } n \text { is odd } ; \\ \frac{n}{2} \text { if } n \text { is even } .\end{array}\right.$

Proof: Since $V\left(P_{3} \times C_{n}\right)$ can be divided based on vertex degree into two subsets:

$$
\begin{gathered}
Q_{1}=\{v \in V ; \operatorname{deg}(v)=2\} \\
=\{(1, j),(4, j): 1 \leq j \leq n\} ; \\
Q_{2}=\{v \in V ; \operatorname{deg}(v)=4\}=\{(2, j),(3, j): 1 \leq j \leq \\
n\} .
\end{gathered}
$$

it is obvious that all vertices of Q_{1} are 3-immune which means $Q_{1} \subseteq S_{0}$. Let $S_{0}=Q_{1}$ be the seed set,
then $S_{1}=S_{0} \neq V\left(P_{4} \times C_{n}\right)$ and the process fails. This means:

$$
\begin{equation*}
C_{3}\left(P_{4} \times C_{n}\right)>2 n \tag{3}
\end{equation*}
$$

Now let us consider the two following cases for n :
Case 1: n is odd. Let the seed set be $S_{0}=Q_{1} \cup$ $\{(2,1)\}$ which is of cardinality $2 n+1$. The process goes as follows:
$S_{1}=S_{0} \cup\{(3,2),(3, n)\} ; S_{2}=S_{1} \cup\{(2,3),(2, n-$ $1)\} ; S_{3}=S_{2} \cup\{(3,4),(2, n-2)\} ;$

For $2 \leq t \leq n-1$ and t is even: $S_{t}=S_{t-1} \cup$ $\{(2, t+1),(2, n-t+1)\} ;$

For $3 \leq t \leq n-2$ and t is odd: $S_{t}=S_{t-1} \cup$ $\{(3, t+1),(3, n-t+1)\} ;$

The process ends at $t=n$ for which $S_{n}=S_{n-1} \cup$ $\{(3,1)\}=V\left(P_{4} \times C_{n}\right) . \quad$ Therefore, $\quad S_{0}=Q_{1} \cup$ $\{(2,1)\}$ is I3CS which means if n is odd:

$$
\begin{equation*}
C_{3}\left(P_{4} \times C_{n}\right) \leq 2 n+1 \tag{4}
\end{equation*}
$$

From Eqs 3 and $4 ; C_{3}\left(P_{4} \times C_{n}\right)=2 n+1$ if n is odd. Without loss of generality and due to symmetry, the same argument applies for any $S_{0}=Q_{1} \cup\{x: x \in$ $\left.R_{2} \cup R_{3}\right\}$ and the same results is obtained. Therefore, $C T_{3}\left(P_{4} \times C_{n}\right)=n$ if n is odd.

Case 2: n is even. Due to (3); $C_{3}\left(P_{4} \times C_{n}\right)>2 n$. It is obvious that $R_{2} \cup R_{3}=M_{1} \cup M_{2}$:

$$
\begin{aligned}
& M_{1}=\left\{(2,2 i+1),(3,2 j): 0 \leq i \leq \frac{n}{2}-1 ; 1 \leq j\right. \\
& \left.\quad \leq \frac{n}{2}\right\} \\
& M_{2}=\left\{(2,2 j),(3,2 i+1): 0 \leq i \leq \frac{n}{2}-1 ; 1 \leq j\right. \\
& \left.\quad \leq \frac{n}{2}\right\}
\end{aligned}
$$

It is noticeable that each one of $G_{M_{1}}, G_{M_{2}}$ is a cycle of order n. It can also be noticed that $G_{R_{2} \cup R_{3}}=G_{M_{1} \cup M_{2}}$ is not connected because no vertex of M_{1} is adjacent to any vertex of M_{2} and vice versa. This means $Q_{1} \cup$ $\left\{x: x \in R_{2} \cup R_{3}\right\}$ is not an I3CS on $P_{4} \times C_{n}$ because the conversion will not reach any vertex of M_{2} if $x \in$ M_{1} and vice versa, therefore one more vertex must be added to S_{0} so it becomes:
$S_{0}=Q_{1} \cup\left\{x, y: x \in M_{1}\right.$ and $\left.y \in M_{2}\right\}$. Let us choose $x=(2,1), y=(3,1)$. The process goes as:
$S_{0}=Q_{1} \cup\{(2,1),(3,1)\} ; S_{1}=S_{0} \cup$ $\{(2,2),(3,2),(2, n),(3, n)\}$;

For $2 \leq t \leq \frac{n}{2}-1: S_{t}=S_{t-1} \cup\{(2, t+1),(2, n-$ $t+1),(3, t+1),(3, n-t+1)\}$;

The process ends at $t=\frac{n}{2}$ for which $S_{\frac{n}{2}}=S_{\frac{n}{2}-1} \cup$ $\left\{\left(2, \frac{n}{2}+1\right),\left(3, \frac{n}{2}+1\right)\right\}=V\left(P_{4} \times C_{n}\right)$.

Therefore, $S_{0}=Q_{1} \cup\{(2,1)\}$ is I3CS which means $C_{3}\left(P_{4} \times C_{n}\right) \leq 2 n+2$ if n is even. This means that $C_{3}\left(P_{4} \times C_{n}\right)=2 n+2$ if n is even. Without loss of generality and due to symmetry, the same argument applies for any $S_{0}=Q_{1} \cup\left\{x, y: x \in M_{1}\right.$ and $y \in$ $\left.M_{2}\right\}$ and the same results are obtained. Therefore, $C T_{3}\left(P_{4} \times C_{n}\right)=\frac{n}{2}$ if n is even. From all the previous cases the requeated is proven.

Proposition 7: For $n \geq 3$:
i. $\quad C_{3}\left(P_{5} \times C_{n}\right)=$

$$
\left\{\begin{array}{l}
\frac{5 n}{2} \text { if } n \equiv 0(\bmod 4) \\
\frac{5 n+1}{2} \text { if } n \equiv 1,3(\bmod 4) \\
\frac{5 n}{2}+1 \text { if } n \equiv 2(\bmod 4)
\end{array}\right.
$$

ii. $\quad C T_{3}\left(P_{5} \times C_{n}\right)=2$.

Proof: In a similar way to previous cases, $V\left(P_{3} \times\right.$ C_{n}) can be divided based on vertex degree into:

$$
\begin{aligned}
& Q_{1}=\{v \in V ; \operatorname{deg}(v)=2\} \\
& \quad=\{(1, j),(5, j): 1 \leq j \leq n\}
\end{aligned}
$$

$$
\begin{array}{r}
Q_{2}=\{v \in V ; \operatorname{deg}(v)=4\}= \\
\{(2, j),(3, j),(4, j): 1 \leq j \leq n\}
\end{array}
$$

Since $k=3$, all vertices of Q_{1} must be included in S_{0}. Let us define the sets $U_{j}: 2 \leq j \leq n-3$ as $U_{j}=$ $\{(3, j),(2, j+1),(4, j+1),(3, j+2)\}$. It can be noticed that for any j then U_{j} is 3-immune because each vertex of $u \in U_{j}$ is of degree 4 and is adjacent to two vertices of U_{j}. Fig 2 shows that U_{3} is 3immune on $P_{5} \times C_{5}$ which means if $U_{3} \cap S_{0}=\emptyset$ then the process fails even when $S_{0}=V-U_{3}$.

Figure 2. 3-immune U_{3} on $P_{5} \times C_{5}$.

This means every set $\{(2, j),(3, j),(4, j),(2, j+$ 1), $(3, j+1),(4, j+1),(2, j+2),(3, j+$
2), $(4, j+2): 2 \leq j \leq n-2\}$ must contain at least one vertex of S_{0}, otherwise at least one version of $U_{j} \cap S_{0}=\emptyset$ will be left on $P_{5} \times C_{n}$ while as shown in Fig 3, every set $U_{j}^{\prime}=\{(2, j),(3, j),(4, j),(2, j+$ 1), $(3, j+1),(4, j+1),(2, j+2),(3, j+$ 2), $(4, j+2),(2, j+3),(3, j+3),(4, j+3): 2 \leq$ $j \leq n-4\}$ must contain at least two vertices of S_{0}, otherwise at least one version of $U_{j} \cap S_{0}=\emptyset$ will be left on $P_{5} \times C_{n}$ and the process will fail.

Figure 3. the bold squares and circles represent 3-immune sets on an arbitrary U_{j}^{\prime} when $\left|U_{j}^{\prime} \cap S_{0}\right|=1$.

Since each vertex of $(2,1),(3,1),(4,1)$ is adjacent to two verices of CO_{n} while each of $(1,1),(5,1)$ is adjacent to one vertex of CO_{n} (and vice versa), then the same argument studied above applies to $C O_{1}, \mathrm{CO}_{n-1}, \mathrm{CO}_{n}$. This means every $U_{j}^{\prime}: 1 \leq j \leq n$ must contain at least two vertices of S_{0}. The following cases for n are considered:

Case 1: $n \equiv 0(\bmod 4)$. As it was found out, in addition to Q_{1}, at least $2\left(\frac{n}{4}\right)=\frac{n}{2}$ vertices of Q_{2} must be included in S_{0} to avoid leaving any version of U_{j} for which $U_{j} \cap S_{0}=\emptyset$. This means for $n \equiv$ $0(\bmod 4)$:
$C_{3}\left(P_{5} \times C_{n}\right) \geq 2 n+\frac{n}{2}=\frac{5 n}{2}$.
Let the seed set be $S_{0}=Q_{1} \cup\{(3,4 l+1),(3,4 l+$ $\left.2): 0 \leq l \leq \frac{n}{4}-1\right\}$ which is of cardinality $\frac{5 n}{2}$. The process goes as follows:
$t=0: S_{0}=Q_{1} \cup\{(3,4 l+1),(3,4 l+2): 0 \leq l \leq$ $\left.\frac{n}{4}-1\right\}$;
$t=1: S_{1}=S_{0} \cup\{(2, l),(4, l): 1 \leq l \leq n\}$.
$t=2: S_{2}=S_{1} \cup\{(3,4 l+3),(3,4 l+4): 0 \leq l \leq$
$\left.\frac{n}{4}-1\right\}=V\left(P_{5} \times C_{n}\right)$ which means S_{0} is an I3CS on
$P_{5} \times C_{n}$. Therefore, $C_{3}\left(P_{5} \times C_{n}\right) \leq \frac{5 n}{2}$. From (5) it is obtained that $C_{3}\left(P_{5} \times C_{n}\right)=\frac{5 n}{2}$ if $n \equiv 0(\bmod 4)$.

It can also be concluded that $C T_{3}\left(P_{5} \times C_{n}\right) \leq 2$. Looking at Fig 2, it is noticeable that converting all vertices of U_{j}^{\prime} in one step starting from two converted vertices is impossible. This means $C T_{3}\left(P_{5} \times C_{n}\right)=$ 2 if $n \equiv 0(\bmod 4)$.

Let us define S_{0} for the remaining cases. However, the process in these cases goes similarly to Case 1 (with the same number of steps):

Case 2: $n \equiv 1(\bmod 4)$.
$S_{0}=Q_{1} \cup\left\{(3,4 l+1),(3,4 l+2): 0 \leq l \leq\left\lfloor\frac{n}{4}\right\rfloor-\right.$ $1\} \cup\{(3, n)\}$ of cardinality $\frac{5 n+1}{4}$.

Case 3: $n \equiv 2(\bmod 4)$.
$S_{0}=Q_{1} \cup\left\{(3,4 l+1),(3,4 l+2): 0 \leq l \leq\left\lfloor\frac{n}{4}\right\rfloor-\right.$
$1\} \cup\{(3, n-1),(3, n)\}$ of cardinality $\frac{5 n}{2}+1$.
Case 4: $n \equiv 3(\bmod 4)$.
$S_{0}=Q_{1} \cup\left\{(3,4 l+1),(3,4 l+2): 0 \leq l \leq\left\lfloor\frac{n}{4}\right\rfloor-\right.$ $1\} \cup\{(3, n-2),(3, n-1)\}$ of cardinality $\frac{5 n+1}{4}$.

From all the previous cases the requested is concluded.

Proposition 8: For $m, n \geq 3$;
i. $\quad C_{4}\left(P_{m} \times C_{n}\right)=$
$\left\{\begin{array}{l}n m-\max \left\{(n-2)\left\lceil\frac{m-2}{2}\right\rceil,(m-2)\left\lfloor\frac{n-2}{2}\right\rfloor\right\} \text { if } m \text { or } n \text { is odd; } \\ \frac{m n+2 m+2 n-4}{2} \text { if } m \text { and } n \text { are even. }\end{array}\right.$ ii. $\quad C T_{4}\left(P_{m} \times C_{n}\right)=1$.

Proof: Since $k=4$, all vertices of $Q_{1}=R_{1} \cup R_{m}$ must be included in S_{0}. Otherwise, the process automatically fails. Since every $u \in Q_{2}=V\left(P_{m} \times\right.$ $\left.C_{n}\right)-Q_{1}$ is of degree 4 , there cannot be two adjacent unconverted vertices of Q_{2} at $t=0$ or else neither one of these two vertices will satisfy the conversion rule at any step of the process, therefore the process fails. To avoid that, $Q_{2}-S_{0}$ must be independent. In order to make S_{0} as small as possible, $Q_{2}-S_{0}$ must be as large as possible, thus $Q_{2}-S_{0}$ must be the largest independent set of the graph $G_{Q_{2}}$ which is induced by Q_{2} on $P_{m} \times C_{n}$, which means $\mid Q_{2}-$ $S_{0} \mid=\alpha\left(G_{Q_{2}}\right)$. It is noticeable that $G_{Q_{2}}$ represents a $P_{m-2} \times C_{n-2}$ graph. Therefore, due to Theorem 2 it can be concluded that $\alpha\left(G_{Q_{2}}\right)=\alpha\left(P_{m-2} \times C_{n-2}\right)=$ $\max \left\{\alpha\left(P_{m-2}\right)\left|C_{n-2}\right|,\left|P_{m-2}\right| \alpha\left(C_{n-2}\right)\right\} \quad$ and the smallest seed set S_{0} on $P_{m} \times C_{n}$ that contains Q_{1} and guarantees not leaving two adjacent unconverted vertices from Q_{2} is of cardinality:
$\left|S_{0}\right|=\left|Q_{1}\right|+\left|Q_{2}\right|-\alpha\left(P_{m-2} \times C_{n-2}\right)$. Due to Theorem 1 this means:
$C_{4}\left(P_{m} \times P_{n}\right)=n m-\max \left\{(n-2)\left[\frac{m-2}{2}\right],(m-\right.$
2) $\left.\left[\frac{n-2}{2}\right]\right\}$. However, in case m, n are even, then $\left\lceil\frac{m-2}{2}\right\rceil=\frac{m-2}{2}$ and $\left\lfloor\frac{n-2}{2}\right]=\frac{n-2}{2}$, then $\max \{(n-$
2) $\left.\left\lceil\frac{m-2}{2}\right],(m-2)\left\lfloor\frac{n-2}{2}\right]\right\}=\frac{(m-2)(n-2)}{2} \quad$ which means

$$
C_{4}\left(P_{m} \times C_{n}\right)=n m-\frac{(m-2)(n-2)}{2}=
$$

$\frac{m n+2 m+2 n-4}{2}$ and thus proving the requested in (i).
Since $k=4=\Delta(G)$ and by Proposition 2; $C T_{4}\left(P_{m} \times C_{n}\right)=1$ for $m, n \geq 3$. \square

Proposition 9: For $n \geq 2 ; C T_{1}\left(L_{n}\right)=\left\lceil\frac{n+1}{2}\right\rceil$.
Proof: It is known that $C_{1}\left(L_{n}\right)=1$ since L_{n} is connected. Let us consider the following cases for n :

Case 1. n is odd.
Let the seed set be $S_{0}^{(0)}=\left\{\left(1, \frac{n+1}{2}\right)\right\}$; the process goes as follows:
$S_{1}^{(0)}=S_{0}^{(0)} \cup\left\{\left(1, \frac{n-1}{2}\right),\left(1, \frac{n+3}{2}\right),\left(2, \frac{n+1}{2}\right)\right\} ; \quad S_{2}^{(0)}=$ $S_{1}^{(0)} \cup\left\{\left(1, \frac{n-3}{2}\right),\left(1, \frac{n+5}{2}\right),\left(2, \frac{n-1}{2}\right),\left(2, \frac{n+3}{2}\right)\right\} ;$

For $\quad 3 \leq t \leq \frac{n-1}{2}: \quad S_{t}^{(0)}=S_{t-1}^{(0)} \cup$ $\left\{\left(1, \frac{n-2 t+1}{2}\right),\left(1, \frac{n+2 t+1}{2}\right),\left(2, \frac{n-2 t+3}{2}\right),\left(2, \frac{n+2 t-1}{2}\right)\right\}$

$$
=\left\{(1, l),(2, r): \frac{n-2 t+1}{2} \leq\right.
$$

$\left.l \leq \frac{n+2 t+1}{2} ; \frac{n-2 t+3}{2} \leq r \leq \frac{n+2 t-1}{2}\right\}$.
$S_{\frac{n-1}{2}}^{(0)}=\{(1, l),(2, r): 1 \leq l \leq n ; 2 \leq r \leq n-1\}$.
The process at $t \leq \frac{n+1}{2}$ for which $S_{\frac{n+1}{2}}^{(0)}=S_{\frac{n-1}{2}}^{(0)} \cup$ $\{(2,1),(2, n)\}=V\left(L_{n}\right)$. Due to symmetry purposes, the same result is obtained if $S_{0}^{(0)}=\left\{\left(2, \frac{n+1}{2}\right)\right\}$. Now Let us study the process if a different vertex from the upper row is chosen as the seed set as follows:

For any $\quad 1 \leq i \leq \frac{n-3}{2}: \quad S_{0}^{(i)}=\left\{\left(1, \frac{n+1}{2}-i\right)=\right.$ (1, $\left.\left.\frac{n-2 i+1}{2}\right)\right\}$;
$S_{1}^{(i)}=S_{0}^{(i)} \cup\left\{\left(1, \frac{n-2 i-1}{2}\right),\left(1, \frac{n-2 i+3}{2}\right),\left(2, \frac{n-2 i+1}{2}\right)\right\} ;$
$S_{2}^{(i)}=S_{1}^{(i)} \cup$
$\left\{\left(1, \frac{n-2 i-3}{2}\right),\left(1, \frac{n-2 i+5}{2}\right),\left(2, \frac{n-2 i-1}{2}\right),\left(2, \frac{n-2 i+3}{2}\right)\right\} ;$
For $\quad 3 \leq t \leq \frac{n-2 i-1}{2}$: $\quad S_{t}^{(i)}=S_{t-1}^{(i)} \cup$
$\left\{\left(1, \frac{n-2 i-2 t+1}{2}\right),\left(1, \frac{n-2 i+2 t+1}{2}\right),\left(2, \frac{n-2 i-2 t+3}{2}\right),\left(2, \frac{n-2 i+2 t-1}{2}\right)\right\}$
$=$
$\left\{(1, l),(2, r): \frac{n-2 i-2 t+1}{2} \leq l \leq\right.$
$\left.\frac{n-2 i+2 t+1}{2} ; \frac{n-2 i-2 t+3}{2} \leq r \leq \frac{n-2 i+2 t-1}{2}\right\} ;$
$S_{\frac{n-2 i+1}{2}}^{(i)}=S_{\frac{n-2 i-1}{2}}^{(i)} \cup\{(1, n-2 i+1),(2,1),(2, n-$ 2i) \};

For $\quad \frac{n-2 i+3}{2} \leq t \leq \frac{n+2 i-1}{2}: \quad S_{t}^{(i)}=S_{t-1}^{(i)} \cup$ $\left\{\left(1, \frac{n-2 i+2 t+1}{2}\right),\left(2, \frac{n-2 i+2 t-1}{2}\right)\right\}$
$=\left\{(1, l),(2, r): 1 \leq l \leq \frac{n-2 i+2 t+1}{2} ; 1 \leq r \leq\right.$ $\left.\frac{n-2 i+2 t-1}{2}\right\}$;
$S_{\frac{n+2 i-1}{2}}^{(i)}=\{(1, l),(2, r): 1 \leq l \leq n ; 1 \leq r \leq n-$ $1\} ;$

The process ends at $t=\frac{n+2 i+1}{2}$ for which $S_{\frac{n+2 i+1}{2}}^{(i)}=$ $S_{\frac{n+2 i-1}{2}}^{(i)} \cup\{(2, n)\}=V\left(L_{n}\right)$.

It is easy to notice that for $i=\frac{n-1}{2}$ then $S_{0}^{\left(\frac{n-1}{2}\right)}=$ $\{(1,1)\}$ and in this distinct case the process goes as follows:

$$
S_{0}^{\left(\frac{n-1}{2}\right)}=\{(1,1)\} ; S_{1}^{\left(\frac{n-1}{2}\right)}=\{(1,2),(2,1)\}
$$

For $\quad 2 \leq t \leq n-1: \quad S_{t}^{\left(\frac{n-1}{2}\right)}=S_{t-1}^{\left(\frac{n-1}{2}\right)} \cup\{(1, t+$ 1), $(2, t)\}=\{(1, l),(2, r): 1 \leq l \leq t+1 ; 1 \leq r \leq$ $t\}$;

The process ends at $t=n$ for which $S_{n}^{\left(\frac{n-1}{2}\right)}=$ $S_{n-1}^{\left(\frac{n-1}{2}\right)} \cup\{(2, n)\}=V\left(L_{n}\right)$.
It is concluded that for any $1 \leq i \leq \frac{n-1}{2}$ the process ends at $=\frac{n+2 i+1}{2}>\frac{n+1}{2}$. This means the lowest value of $t_{\text {final }}$ is obtained when $i=0$ and due to symmetry, the same result is obtained if $S_{0}^{(i)}=$ $\left\{\left(1, \frac{n+1}{2}+i\right): 1 \leq i \leq \frac{n-1}{2}\right\}$. It is also obvious that the same study applies similarly if $S_{0}^{(i)} \subset R_{2}$. All of the above leads to the conclusion that for $n \geq 3$; $C T_{1}\left(L_{n}\right)=\frac{n+1}{2}=\left\lceil\frac{n+1}{2}\right\rceil$ if n id odd.

Case 2. n is even. By following the same argument of Case 1 , for $n \geq 2 ; C T_{1}\left(L_{n}\right)$ is obtained by choosing $\quad S_{0}=\left\{x ; x \in\left\{\left(1, \frac{n}{2}\right) \cdot\left(1, \frac{n}{2}+\right.\right.\right.$ 1). $\left.\left.\left(2, \frac{n}{2}\right),\left(2, \frac{n}{2}+1\right)\right\}\right\}$, for which the process ends at $t=\frac{n}{2}+1=\left\lceil\frac{n+1}{2}\right\rceil$.

From Case 1 and Case 2; $C T_{1}\left(L_{n}\right)=\left\lceil\frac{n+1}{2}\right\rceil$ for $n \geq$ $2 . \square$

Proposition 10: For $n \geq 2 ; C T_{2}\left(L_{n}\right)=$ $\left\{\begin{array}{l}\frac{n-1}{2} \text { if } n \text { is odd; } \\ n-1 \text { if } n \text { is even. }\end{array}\right.$

Proof: For $1 \leq j \leq n-1$; Let $W_{j}=C O_{j} \cup C O_{j+1}$. It was implied in a previous paper by the authors that $C_{2}\left(L_{n}\right)=\left\lceil\frac{n+1}{2}\right\rceil$ for $n \geq 2$. This conclusion was obtained due to the following sets being 2 -immune: $R_{1} ; R_{2} ; \mathrm{CO}_{1} ; \mathrm{CO}_{n} ;\left\{W_{j}: 1 \leq j \leq n-1\right\}$ because for any $\quad u \in U \quad$ when $\quad U \in\left\{R_{1}, R_{2}, C O_{1}, C O_{n}, W_{j}\right\}$; $|N(u)-U|<2$. This means when creating S_{0} the following cases for n must be considered:

Case 1: n is odd.
To avoid leaving any unconvertible 2-immune sets one vertex from each odd indexed column must be included in S_{0}. However, the process then ends at $t=$ 0 . Therefore, it is necessary to include one more vertex in S_{0}. Let $S_{0}^{(0)}=\left\{(1,2 l+1): 0 \leq l \leq \frac{n-1}{2}\right\} \cup$ $\left\{\left(2, \frac{n+1}{2}\right)\right\}$ which is of cardinality $\frac{n+1}{2}$. By tracking the process in a similar way to Proposition 9, the process goes as:

$$
\begin{aligned}
S_{0}^{(0)}=\{(1,2 l+1) & \left.: 0 \leq l \leq \frac{n-1}{2}\right\} \\
& \cup\left\{\left(2, \frac{n+1}{2}\right)\right\} ; S_{1} \\
& =\{(1, l): 1 \leq l \leq n\} \\
& \cup\left\{\left(2, \frac{n-1}{2}\right),\left(2, \frac{n+3}{2}\right)\right\} ;
\end{aligned}
$$

For $\quad 2 \leq t \leq \frac{n-1}{2}: \quad S_{t}=S_{t-1} \cup$
$\left\{\left(2, \frac{n+2 t-1}{2}\right),\left(2, \frac{n+2 t+1}{2}\right)\right\}=\{(1, l),(2, r): 1 \leq l \leq$ $\left.n ; \frac{n+2 t-1}{2} \leq r \leq \frac{n+2 t+1}{2}\right\} ;$

The process ends successfully at $t_{\text {final }}^{(0)}=\frac{n-1}{2}$ and similarly to Proposition 9 ; $t_{\text {final }}^{(i)}=\frac{n+2 i-1}{2}$ for any $S_{0}^{(i)}=\left\{(1,2 l+1): 0 \leq l \leq \frac{n-1}{2}\right\} \cup\left\{\left(2, \frac{n+1}{2} \mp\right.\right.$
$i)\}: 1 \leq i \leq \frac{n-1}{2}$. This means $t_{\text {final }}^{(0)}=\frac{n-1}{2}=$ $\min \left\{t_{\text {final }}^{(i)}\right\}$ for $0 \leq i \leq \frac{n-1}{2}$. Due to symmetry the same result is obtained in the case of alternating between R_{1} and R_{2} when creating $S_{0}^{(0)}$. From all the above; $C T_{2}\left(L_{n}\right)=\frac{n-1}{2}$ for $n \geq 3$ if n is odd.

Case 2: n is even.

To avoid leaving any unconvertible 2 -immune set on L_{n} when distributing the $\left\lceil\frac{n+1}{2}\right\rceil$ seed vertices, let us consider the following cases (options):

Case 2.a: Include one vertex from each even indexed column and one vertex of CO_{1} in S_{0}.

Case 2.b: Include one vertex from each odd indexed column and one vertex of $C O_{n}$ in S_{0}.

In both subcases there cannot be any other vertex located freely (unlike Case 1). For Case 2.a, the process goes as:

Conclusion

In this paper a new invariant called the irreversible k-threshold conversion time (denoted by $C T_{k}(G)$ was defined. This invariant retrieves the minimum number of steps (t) that the minimum IkCS needs in order to convert $\mathrm{V}(\mathrm{G})$ entirely. $C T_{k}(G)$ was also

Acknowledgment

This work was supported by Faculty of Science, Tishreen University, Syria.

Authors' Declaration

- Conflicts of Interest: None.
- We hereby confirm that all the Figures and Tables in the manuscript are ours. Furthermore, any Figures and images, that are not ours, have been

Authors' Contribution Statement

R. Sh. designed the study and found the irreversible k-threshold conversion number of the tensor product of a path and a cycle. A. K. introduced the irreversible k -threshold conversion time definition

References

1. Aisyah S, Utoyo MI, Susilowati L. The Fractional Local Metric Dimention of Comb Product Graphs. Baghdad Sci J. 2020; 17(4): 1288-1293. http://dx.doi.org/10.21123/bsj.2020.17.4.1288.
2. Mao Y, Dankelmann P, Wang Z. Steiner diameter,maximum degree and size of a graph. Discrete Math. 2021; 344(8), 112468. https://doi.org/10.1016/j.disc.2021.112468.

$$
\begin{aligned}
S_{0}=\{(1,2 l+1): & \left.0 \leq l \leq \frac{n}{2}-1\right\} \cup\{(2,1)\} ; S_{1} \\
& =\{(1, l): 1 \leq l \leq n\} \\
& \cup\{(2,1),(2,2)\} ;
\end{aligned}
$$

For $\quad 2 \leq t \leq n-1: \quad S_{t}=S_{t-1} \cup\{(2, t+1)\}=$ $\{(1, l),(2, r): 1 \leq l \leq n ; 1 \leq r \leq t+1\} ;$

The process ends successfully at $t=n-1$. It is obvious that the same result is obtained in Case 2.b. Therefore, for $n \geq 2 ; C T_{2}\left(L_{n}\right)=n-1$ if n is even.

From Case 1 and Case 2 the requested is proven.
Observation 4: Due to Proposition 2 and since $\Delta\left(L_{n}\right)=3 ; C T_{3}\left(L_{n}\right)=1$.
studied on some simple graphs, then both $C_{k}\left(P_{m} \times\right.$ $\left.C_{n}\right)$ and $C T_{k}\left(P_{m} \times C_{n}\right)$ were determined for some values of $k, \quad m$, $\quad n$. Finally, $C_{k}(G)$ of the Ladder graph L_{n} for $n \geq 2$ was determined.
included with the necessary permission for republication, which is attached to the manuscript.

- Ethical Clearance: The project was approved by the local ethical committee in Tishreen University, Syria.
and studied it for $P_{m} \times C_{n}$ and L_{n}. S. M. applied the new definition to some simple graphs and organized the manuscript. The submitted version of the manuscript was checked and approved by all authors.

3. Bickle A. Fundementals in Graph Theory. USA: American Mathematical Society. 2020; 336 p.
4. Dreyer PA, Roberts FS. Irreversible k-threshold processes: Graph theoretical threshold models of the spread of disease and of opinion. Discret Appl Math. 2009; 157(7): 615-1627. https://doi.org/10.1016/j.dam.2008.09.012.
5. Wodlinger JL. Irreversible k-Threshold Conversion Processes on Graphs. PhD thesis. University of Victoria; 2018.
6. Mynhardt CM, Wodlinger JL. The k-conversion number of regular graphs. AKCE Int J Graphs Comb. 2020; 17(3): 955-965. https://doi.org/10.1016/j.akcej.2019.12.016 .
7. Shaheen R, Mahfud S, Kassem A. Irreversible kThreshold Conversion Number of Circulant Graphs. J Appl Math. 11 August 2022; 2022: 14 pages. https://doi.org/10.1155/2022/1250951.
8. Uma L, Rajasekaran G. On alpha labeling of tensor product of paths and cycles. Heliyon. 2023, e21430. https://doi.org/10.1016/j.heliyon.2023.e21430
9. Praveenkumar L, Mahadevan G, Sivagnanam C. An Investigation of Corona Domination Number for Some Special Graphs and Jahangir Graph. Baghdad Sci J. 2023; 20(1(Special issue)) ICAAM: 294-299. https://dx.doi.org/10.21123/bsj.2023.8416
10. Jha PK, Klavz̃ar S. Independence in direct-product graphs. Ars Comb. 1998; 50: 53-63.

معامل جديد متعلق بعمليات التحول غير العكوس ذو عتبة الاتتشثار k في البيان رامي شاهين، سهيل محفوض، علي قاسم
 قسم الرياضيات، كلية العلوم، جامعة تشرين، اللاذقية، سوريا.

الذلاصة

تشكل عملية انتشار التحول غير العكوس ذو العتبة k في بيان ما $G=(V, E)$ نوعاً خاصاً من عمليات الانتشار البيانية والتي تهتم بشكل خاص بدر اسة انتشار تنير في حالة رؤوس للبيان G انطلاقاً من مجمو عة اختيارية من رؤوسه حيث التا يتحقق انتشار النحول إلى الرؤوس المجاورة وفقاً لقاعدة تحول محددة مسبقاً. إن عملية انتشار التحول غير العكوس نو العتبة k في البيان G في هي عملية تكرارية

 عملية النحول غير العكوس ذو العتبة k و وإذا نحقق أن أن

 (نرمز له بـ (GT (G) و والذي يقيس أقل عدد مككن من الخطوات (t) التي تحتّاجها مجموعة IkCS أصغرية لنشر النحول إلى كافة

$$
\text { كذللك نوجد } C T_{k} \text { للبيان السلمي } L_{n} \text { من أجل } k=1,2,3 \text { وأي قيمة عشو انية لـ } n \text {. }
$$

الكلمات المفتاحية: عمليات التحول اليبانية، عدد التحول ذو عتبة الانتشار k، زمن التحول ذو عتبة الانتشار k، مجموعة البذرة، الجداء

