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Introduction 

The world is grappling with the challenge of 

COVID-19, a respiratory illness caused by the novel 

Coronavirus, significantly impacting various aspects 

of human life due to its highly contagious nature. As 

of August 8, 2021, there have been over 200 million 

confirmed cases and 4.25 million reported deaths 

worldwide, with the global infection rate continuing 

to rise. 

Accurate diagnostic methods and efficient 

treatment protocols are imperative in addressing the 

ongoing pandemic. Various diagnostic techniques, 

including isothermal nucleic acid amplification 

technologies and real-time reverse transcription-

polymerase chain reaction (RT-PCR), are available 

for identifying COVID-19. Currently, RT-PCR has 

become widely employed for COVID-19 diagnosis. 

Abstract 

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) poses a global threat, impacting 

millions worldwide. While automated detection of lung infections through Computed Tomography (CT) 

scans is a promising alternative, segmenting infected regions from CT slices remains challenging due to 

low-contrast infection boundaries and blurred appearances. To address this challenge, A deep-learning 

model called ECGANCOVID-Net is proposed for detection and identification of infected regions in chest 

CT images. Our model utilizes a semantic hierarchical segmenter to detect regions of lung infection caused 

by Coronavirus in CT medical images. The model consists of two components, namely the U-CGAN-Net 

models. The initial neural network, UCGAN-Net1, is designed to detect lung parenchyma. Subsequently, 

the second neural network, UCGAN-Net 2, operates on the segmented lungs to accurately identify the 

specific regions impacted by COVID-19 lesions. UCGAN-Net comprises a conditional generative 

adversarial network (CGAN) incorporating an adapted generator and discriminator.Furthermore, our model 

employs data augmentation techniques to address the issue of limited training data.Through extensive trials, 

it has been discovered that the suggested methodology exhibits superior performance compared to recently 

proposed techniques . This is particularly evident in the improved overall performance of our model when 

accurately determining the location of tiny lesions. The proposed ECGANCOVID net has demonstrated 

exceptional performance in segmenting COVID-19 lesions, achieving higher localization performance with 

a Dice Similarity Coefficient (DSC) of 84.5% and Intersection over Union (IOU).Additionally, the 

suggested model has undergone external validation using an unseen dataset, resulting in Dice Similarity 

Coefficient of 69.7%. 
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However, this method has limitations, including low 

Sensitivity, insufficient test kit availability, and 

suboptimal efficiency. Recent research suggests that 

chest computed tomography (CT) images may 

provide a viable alternative in healthcare due to their 

heightened Sensitivity, accuracy, and ease of 

accessibility1. 

The assessment of medical images is typically a 

laborious and time-intensive task performed by 

radiologists. While improvements in CT scan 

resolution and the number of slices have increased 

Sensitivity and accuracy, they have also resulted in 

elevated workloads. Clinical decision support 

systems relying on automated interpretation of 

medical images, particularly through artificial 

intelligence and deep learning models, have shown 

notable progress. Image segmentation, a sub-field 

garnering significant attention, aims to automate 

finding and labeling areas of interest within medical 

images, including organs and abnormalities. The 

application of neural networks in medical image 

segmentation has demonstrated strong predictive 

ability comparable to radiologists' performance. 

Implementing an automatic segmentation tool for 

Corona-infected regions can serve as a valuable 

clinical decision support system for physicians. 

Image segmentation plays a crucial role in assisting 

radiologists with diagnosis, disease monitoring, 

inspection processes streamlining, and accuracy 

enhancement by automatically highlighting 

abnormal features and regions of interest (ROIs)2. 

CT scans have the potential to detect incipient 

lesions and can be employed by radiologists for 

diagnostic purposes. The initial stage in evaluating 

lung illnesses via medical imaging involves lung 

segmentation. Accurate segmentation of COVID-19-

related diseases from CT imaging is essential for 

analysis and quantification. Researchers have 

proposed various techniques for lung segmentation, 

categorized into handcrafted strategies and deep-

learning approaches. Handcrafted techniques, such 

as morphological-based techniques3 and active 

contour models4 , involve physician intervention, are 

subject to bias, and are time-intensive. Furthermore, 

manually designed segmentation techniques are 

often tailored to specific imaging modalities, 

applications, and datasets, posing challenges in 

generalizing across diverse scenarios. There is a 

pressing need for automated segmentation of lung 

infections caused by COVID-19 in healthcare 

settings. 

   Before the advent of Deep Learning (DL), 

conventional Medical Imagery (MI) segmentation 

techniques primarily relied on methods like active 

contour models4 , level set-based approaches5, 

watershed algorithms6, region growing7, Markov 

Random Fields8, and their respective extensions. 

However, these methodologies produced satisfactory 

outcomes only when a significant contrast existed 

between the background and the object area. Models 

often incorporated local feature limitations and 

curvature constraints to enhance segmentation 

accuracy. Nevertheless, such solutions proved less 

effective in cases where the object and background 

areas exhibited identical characteristics. Therefore, 

using deep learning algorithms for addressing 

medical image segmentation presents a promising 

area of research with both theoretical and practical 

implications.  

Deep learning approaches aim to assist in rapidly and 

precisely identifying abnormalities in radiographic 

pictures. However, for deep learning models to 

achieve effective generalization, they require 

extensive training with substantial data. The data 

must be adequately labeled, especially in tasks such 

as image segmentation. The research community 

widely acknowledges that convolutional neural 

network (CNN) based designs are the most 

promising and extensively used method currently 

available. 

     In medical imagery segmentation, convolutional 

neural networks have shown promising results lately. 

The Fully Convolutional Networks (FCN)9 model is 

frequently employed in contemporary medical image 

segmentation tasks based on information from CNN. 

Subsequently, using semantic segmentation or pixel-

wise classification algorithms, novel techniques 

were suggested to enhance the accuracy of 

segmenting contaminated areas in radiographic 

scans. The encoder-decoder architecture, frequently 

utilized for semantic segmentation, incorporates 

methodologies such as the fully convolutional 

network (FCN). Within this architectural framework, 

the encoder module captures feature representations 

of the input data. 

On the other hand, the decoder module utilizes these 

representations to restore location information that 

may have been lost during the pooling process, 

ultimately generating a binary mask. An exemplary 

instance of this architectural design is Unet, 

renowned for preserving essential information from 

input pictures by using skip connections between the 

encoding and decoding layers. The U-Net10 
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architecture, built with the help of Convolutional 

Neural Network (CNN), is modified to achieve better 

segmentation in the medical imaging domain. 

Various UNet-based models, such as the Attention 

Unet11 and Residual Unet12, have been specifically 

developed to effectively segment infections for 

COVID-19 purposes. 

Generative Adversarial Networks (GANs) have 

recently presented an alternative approach to 

enhancing medical image segmentation and 

obtaining more precise outcomes, remaining a topic 

of active research. GANs have notably improved 

semantic medical image segmentation quality thanks 

to their exceptional synthesizing capabilities and 

potential to extract and distribute data effectively. 

The utilization of adversarial loss during training has 

been discovered to enhance semantic segmentation 

performance13. Image generation models, such as 

Generative Adversarial Networks (GANs)14, are 

increasingly used for various tasks, and Conditional 

GANs are utilized to generate images from existing 

ones by incorporating random noise, which is 

beneficial for style transfer. 

 

Related works  

     Recently, numerous studies have proposed 

Machine Learning approaches to automate COVID-

19 detection as a classification problem based on 

biomarker analysis, such as demographic and clinical 

information. These approaches provide 

discriminative semantic features for frameworks 

aiming at the early detection of this novel virus. 

Predicting newly contaminated and recovered 

COVID-19 cases is crucial for controlling disease 

progression. In a study15, the authors utilized 

machine learning and laboratory data to predict 

COVID-19 patients, comparing three DL methods: 

Support Vector Machines (SVM), artificial neural 

networks (ANN), and K-nearest neighbors (k-NN) 

algorithms. Models were verified with 10-fold cross-

validation and train-test split methods using 18 

laboratory data from 600 patients. The results 

indicated that SVM outperformed the other 

algorithms in accuracy. Another studies16-18, based 

on levels of lymphocytes, CRP, and SPO2, employed 

machine learning, using a Lasso-logistic regression 

model to forecast the risk level of patients with 

COVID-19. This research utilized data collected 

from Azizia Primary Healthcare Sector- Wasit 

Governorate-Iraq, predicting multi-class case 

severity (severe, moderate, and mild) with over 85% 

accuracy. This allows for early intervention, 

diagnosis, and potentially a reduction in mortality for 

COVID-19 afflicted individuals. Tackling the 

multitude of challenges posed by COVID-19, 

strategies to triage patients could aid in determining 

treatment priority and administering targeted 

medication to individuals at high risk of severe 

illness. Establishing a Multidimensional 

Examination Framework (MEF), the study authors17 

prioritized severe COVID-19 patients using 

integrated multi-criteria decision-making (MCDM) 

methodologies. The MEF considered various 

dimensions of examination factors, including 

demographic information, laboratory findings, vital 

signs, symptoms, and chronic illnesses, to prioritize 

severe COVID-19 patients. 

However, these studies face challenges, as clinical 

features alone may not always be adequate for 

detecting and assessing COVID-19 due to factors 

such as atypical presentations and overlapping 

symptoms with other respiratory diseases. Clinical 

signs alone may make it difficult to differentiate 

COVID-19 from similar illnesses. On the other hand, 

CT imaging provides a detailed view of lung 

abnormalities associated with COVID-19, offering 

valuable information to monitor changes in lung 

health over time. Ground-glass opacities, 

consolidation, and specific lung features are better 

visualized through CT scans. 

    Recent literatures19-21 have introduced various 

diagnostic approaches for automated COVID-19 

diagnosis, emphasizing CNN-based classification 

models. In response to the challenge of choosing the 

most effective deep learning model for COVID-19 

diagnosis, a study22 introduced a comprehensive 

approach using a unique crow swarm optimization 

methodology. This methodology aids healthcare 

administrators in selecting and evaluating the most 

effective COVID-19 diagnosis models based on deep 

learning. Previous studies focused on detecting and 

classifying Coronavirus without accurately 

identifying and localizing specific lesion areas in a 

particular radiographic image. 

     Conversely, the semantic segmentation networks 

exhibit strong performance in identifying regions 

affected by Coronavirus in each radiographic image. 

Nevertheless, utilizing pixel-level annotated ground 

truths is important to effectively train and validate 

these segmentation networks23. Data annotation in 

the healthcare field necessitates the involvement of 

https://doi.org/10.21123/bsj.2024.9335
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skilled healthcare practitioners, along with a 

substantial allocation of time and resources. Medical 

image segmentation aims to precisely delineate 

regions of interest (ROIs) in medical images, such as 

organs or pathological anomalies, by assigning a 

label to each pixel. Segmentation is an essential 

process, particularly in the analysis of COVID-19 

images, as it can assist radiologists in diagnosing the 

disease, monitoring its course, and enhancing the 

speed and efficiency of their work24-26. Several 

effective pixel-wise classification methods utilizing 

deep learning have been developed to aid in the swift 

and accurate diagnosis of Corona using medical 

imaging. For instance, Reference27 devised a 

comprehensive network structure to semantically 

segment images. Reference28 proposed a 

sophisticated deep-learning model called VB-Net for 

accurately segmenting lung infections and lungs 

from CT images of a patient with COVID-19. 

Reference29 introduced a multi-task deep-learning 

framework that utilizes CT imaging to accurately 

differentiate lung infections.  

Study30 introduced COVID-SegNet, incorporating a 

feature variation block and progressive atrous 

convolutions to emphasize the different infected 

regions and their boundaries. The proposed method 

attained a DSC of 73% for the segmentation of 

Coronavirus. In addition, The researchers in study31 

devised a method for object recognition that utilizes 

bounding boxes to emphasize the contaminated area. 

They employed a weakly supervised methodology to 

enhance the Model's performance using a restricted 

number of labeled Coronavirus samples and utilized 

different variations of the VGG model to categorize 

Corona cases from community-acquired pneumonia 

(CAP) and cases without pneumonia. A 

segmentation method based on image enhancement 

to highlight coronavirus-infected lung areas is 

presented in 32,While extracting lung areas, each lung 

is separated and subjected to local contrast 

enhancement. This technique enhances the contrast 

in the lung images, resulting in more detailed 

information about the target regions.  

Consequently, this leads to improved segmentation 

outcomes. Authors33 introduced the Inf-Net, a deep 

neural network designed to segment lung infections 

caused by COVID-19. The network specifically 

targets areas with ground glass opacities and 

consolidation. The study authors34 recently 

introduced a more advanced encoder-decoder design 

called the PCPLP network. The Model is enhanced 

using an upgraded attention strategy and a multiscale 

multi-level feature recursive aggregation module to 

achieve more precise segmentation results. This 

module effectively learns global feature 

representations that pertain to lesion areas. The 

authors obtained favorable outcomes, with a dice 

coefficient of 78%, surpassing previous cutting-edge 

models. Expert radiologists can deliver more 

accurate and dependable localization through 

ground-truth infection masks. Thus, Degerli et al.35 

introduced an innovative method to create a map of 

COVID-19 infections. They accomplished this by 

assembling a collection of 2951 CXR images that 

included accurately labeled infection segmentation 

masks. Multiple encode-decoder convolutional 

neural networks were trained and assessed using the 

generated dataset. The highest-performing network 

acquired an F1 score of 86% for localized infections. 

     Nevertheless, their suggested methodologies are 

solely focused on localizing COVID-19 infections 

and fail to provide effective and accurately localized 

information regarding the affected areas in the CT 

scan of the lungs because the infection regions have 

ambiguous boundaries, complicating the detection of 

their presence. In addition to Coronavirus detection, 

the localization of infection is another vital task that 

aids in assessing the patient's condition and 

determining the treatment strategy. Additionally, 

numerous authors emphasize that the absence of 

extensive and specific datasets containing images of 

illnesses significantly complicates the task of 

training a model. Added to this is the intricate and 

time-consuming process of annotating each image. 

Only highly skilled medical personnel can perform 

this procedure, which significantly restricts the 

quantity of data that may be produced within a short 

timeframe. In this study, the aim is to overcome the 

limitations of previous research and create a model 

that can accurately detect COVID-19-associated 

findings in chest CT images in a targeted and 

efficient manner. 

 

Motivation 

    While the studies mentioned above have shown 

encouraging outcomes in utilizing chest CT for 

COVID-19 diagnosis, there is still scope for 

enhancement, specifically in lesion segmentation. 

This improvement can benefit physicians in 

accurately diagnosing COVID-19 and evaluating the 

effectiveness of treatment. Previous research has 

focused on the segmentation of lungs and lesions, as 

mentioned above. Nevertheless, the efficacy of the 

lesion segmentation models remains low compared 

https://doi.org/10.21123/bsj.2024.9335


 

 

Published Online First: September, 2024 

https://doi.org/10.21123/bsj.2024.9335  

P-ISSN: 2078-8665 - E-ISSN: 2411-7986 
 

Baghdad Science Journal 

to lung segmentation. Furthermore, these methods 

fail to offer efficient and accurately localized 

information regarding the infected regions in the CT 

scan of the lungs. 

     Therefore, to develop a high-performance method 

for the efficient and well-localized detection of 

COVID-19-related findings in chest CT images, the 

following questions are addressed: How can deep 

learning methodologies be enhanced to mitigate the 

impact of image resolution issues, particularly when 

dealing with CT scans where the appearance of organ 

tissues may lead to the mixing of categories of 

pixels? What approach could be employed to 

improve the delineation of boundaries between the 

surrounding normal tissues and infected areas in the 

lung, and what adaptations can be made to detect 

small affected areas? What innovative strategy can 

overcome the constraints posed by limited access to 

extensive datasets in areas such as medical image 

processing, for example, the absence of 

comprehensive COVID-19 datasets since early 

2020? Due to the sensitive nature of patient health 

data, strict regulations and ethical considerations 

often restrict sharing and access to this information. 

     This paper aims to answer the above questions, 

which are significant for COVID-19 lesion 

segmentation. The contributions are as follows: 

1- Proposing a deep learning hierarchical 

approach, ECGANCOVID, which utilizes two 

UCGAN-Nets to effectively segregate areas 

infected with the Coronavirus using C.T. scans. 

Our hierarchical approach mitigates irrelevant 

background interference by generating lung 

contour maps, addressing the issue where the 

appearance of other organ tissues in the CT scan 

may lead to the mixing of pixel categories. 

2- To effectively handle the issue of significant 

infection variations and low-contrast 

boundaries for segmenting infectious regions 

from the lungs, A context-aware conditional 

generative adversarial network denoted by 

(CGAN) with an adapted architecture for the 

Generator and Discriminator is suggested. 

3- Our designed Model successfully achieves 

robust segmentation of small lesions in chest 

C.T. images, performing superiorly to the latest 

deep segmentation networks by utilizing the 

strength of grouped L1 loss and PatchGAN 

discriminator loss functions, contributing to 

successfully capturing small regions. 

4- The performance of ECGANCOVID-net is 

improved using an augmentation strategy, 

leveraging a large number of CT images to 

augment the training dataset effectively. 

    The remaining sections of the paper are structured 

in the following manner: In Section 2, our proposed 

pipeline has been presented, covering details on 

datasets, pre-processing methods, the architecture of 

the proposed ECGANCOVID-NET, and evaluation 

approaches. The experiments and evaluation metrics 

are discussed in Section 3. Section 4, the outcomes 

of our ablation study had been presented, conducts a 

comprehensive set of comparison assessments across 

the utilized baseline networks, and thoroughly 

discusses and analyzes the obtained results. Finally, 

in Section 5, our conclusions and future work are 

outlined. 

 

Materials and Methods 

To address the complex challenge of effectively 

identifying coronavirus-infected regions in CT 

scans, it is crucial to recognize that information 

outside the lungs is irrelevant, as the infected areas 

are within the lungs. Therefore, our proposed 

approach utilizes a hierarchical segmentation 

strategy instead of a direct segmentation approach. In 

direct segmentation, a CT scan slice is taken as input, 

and during the pre-processing phase, the chest CT 

photographs are scaled and normalized before being 

fed into the infection segmentation network. The 

output of this process is the COVID lesion 

segmentation. 

https://doi.org/10.21123/bsj.2024.9335
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Figure 1. Structure of  ECGANCOVID Network 

 

    Our COVID-19 hierarchical segmentation 

network, named ECGANCOVID-Net (depicted in 

Fig. 1), is developed based on Conditional 

Generative Adversarial Networks (CGAN) with an 

adapted architecture for the Generator and 

Discriminator and is employed to segment 

Coronavirus lesions from CT images in this study. 

The input CT volumes are analyzed slice by slice to 

identify the COVID-19-infected regions. Two 

UCGAN-Net models (UCGAN-Net1 and UCGAN-

Net2 in Fig. 1) are connected in series to perform 

hierarchical segmentation. 

The primary task of these UCGAN-Net models is 

semantic segmentation, classifying each pixel of the 

input CT image as either black '0' or white '1'. The 

output of UCGAN-Net1 indicates the presence of the 

"lung region" with white pixels ('1') and the 

"background" with black pixels ('0'). Similarly, the 

output of UCGAN-Net2 represents the "infectious 

region" and "normal/background region" using white 

pixels ('1') and black pixels ('0'), respectively. 

For each input CT slice, a binary lung mask is 

produced by the first UCGAN-Net1. Subsequently, 

the lung is segmented based on the created mask, and 

the results are input into the second UCGAN-Net2, 

which identifies the infected lung areas. The 

segmented lung mask is generated by superimposed 

(intersection) of the grayscale image with the binary 

lung mask. Fig. 2 displays several instances of lung 

segmentation in slices affected by COVID-19 

infection. Finally, COVID-19 pneumonia lesions can 

be localized using the infection masks and lung 

masks that have been generated.       

https://doi.org/10.21123/bsj.2024.9335
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Figure 2. illustrates visual representations of lung segmentation. The initial column presents the input 

C.T. scan slice; the second column showcases the output of the lung mask, and the final column 

illustrates the results of lung segmented images after masking the lung mask with corresponding raw 

images. 

 

Dataset Description   

    The present study used two publically available 

datasets, namely the COVID-19 CT Lung and 

Infection Segmentation Dataset36 and the COVID-19 

CT Segmentation Dataset37 , to train and assess the 

proposed system. The dataset used for the C.T. 

photographs segmentation modeling procedure, 

including the training and testing phases, is 

specifically sourced from the lung CT-scan dataset 

referenced in 36 . The dataset collected by Ma et al. 

has a total of 20 chest C.T. volumes that have been 

annotated for COVID-19. All cases were confirmed 

Corona infections, with the proportion of individuals 

exhibiting lung infection ranging from 0.01% to 59% 
38. The CT scans include a total of 3520 slices and 

have been sourced from approved sources such as 

Radiopaedia39 and the Corona-Cases Initiative  ( 

RAIOSS )40 

Additionally, to provide C.T. scan files, reference36 

includes two masks intended for segmentation. The 

lung mask and the infection mask are the two types 

of masks. The dataset was subjected to manual 

annotation by two radiologists and later validated by 

an experienced radiologist. Table 1 awards a full 

summary of the dataset employed to analyze C.T. 

scans. The dataset comprises C.T. scans with varied 

width and height dimensions and Depth represented 

by slices. Subsequently, the scans are scaled to a 

standardized size of 256 × 256 × 1. The provided 

class labels for each pixel in the slices indicate 

whether it pertains to the region of interest. A pixel 

assigned with a label of 1 indicates its association 

with the lungs in the lungs annotation and with 

COVID-19, notably ground-glass opacities and 

consolidations, in the infection annotation. In 

contrast, a label value of 0 signifies that the pixel 

corresponds to the background. Table 2 displays a 

comprehensive profile of the C.T. scan utilized for 

each patient. 
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Table 1. Four samples (patient 1, patient 5, patient 10, and 19) were from the dataset 36 

C.T. scan slice Lung mask Infection mask 

 

 

 

  

 

 

 

  

 

 

 

  

 

 

 

  

                         

                                    Table 2. The source and size information of the C.T. scans for each patient. 

Patient Source Size(width x height  x Depth) 

Patient1 Raioss 512 x 512 x 301 

Patient2 Raioss 512 x 512 x 200 

Patient3 Raioss 512 x 512 x 200 

Patient4 Raioss 512 x 512 x 270 

Patient5 Raioss 512 x 512 x 290 

Patient6 Raioss 512 x 512 x 213 

Patient7 Raioss 512 x 512 x 249 

Patient8 Raioss 512 x 512 x 301 

Patient9 Raioss 512 x 512 x 256 

Patient10 Raioss 512 x 512 x 301 

Patient11 Radiopaedia 630 x 630 x 39 

Patient12 Radiopaedia 630 x 630 x 45 

Patient13 Radiopaedia 630 x 630 x 39 

Patient14 Radiopaedia 630 x 630 x 418 

Patient15 Radiopaedia 630 x 401 x 110 

Patient16 Radiopaedia 630 x 630 x 66 

Patient17 Radiopaedia 630 x 630 x 42 

Patient18 Radiopaedia 630 x 630 x 42 

Patient19 Radiopaedia 630 x 630 x 45 

Patient20 Radiopaedia 630 x 630 x 93 
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The second dataset was used for testing and 

evaluating the proposed  ECGANCOVID model 

called COVID-19 CT segmentation dataset37 

comprises nine patients, with a total of 829 slices, 

where Each slice has dimensions of 630 × 630 × d∗ , 

where d* denotes that the number of slices is 

different for each volume. 

 

Pre-processing    

   To improve the quality of C.T. photographs and 

highlight their properties, the CLAHE41  "Contrast 

Limited Adaptive Histogram Equalisation" method 

is utilized for tackling contrast concerns such as 

noise and intensity inhomogeneity. 

This technique was utilized to improve the contrast 

of the acquired images, and it is a variation of 

Adaptive Histogram Equalisation (AHE)42. The main 

goal of the CLAHE technique is to determine the 

mapping for each pixel by examining the grayscale 

distribution in its surrounding area. This is 

accomplished using a transformation function that 

minimizes contrast amplification in densely 

populated areas. The efficacy of (CLAHE) in 

allocating displayed intensity levels in chest C.T. 

scans has been demonstrated in previous studies42,43. 

By implementing this methodology, identifying the 

COVID-19 infection area within a C.T. image is 

improved, making it more distinguishable. Table 3 

compares the CT-scan slices before and after 

implementing CLAHE. All datasets utilized for this 

investigation had photos in the neuroimaging 

informatics technology initiative (NITI) format. The 

format of all images had been changed to PNG and 

normalized the pixel values to fall within the range 

of 0–255 to limit the present variability. For the 

segmentation tasks, the final step was to resize all of 

the photos from the three different datasets to 256 by 

256.  

                  

Table 3. Comparison of CT-scan images before and after applying Contrast Limited                                              

Adaptive Histogram Equalization (CLAHE) pre-processing. 

Without CLAHE 

 

   With CLAHE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Data Augmentation   

Due to the scarcity of annotated medical images 

and to improve the generalization capabilities of our 

models while reducing overfitting, data 

augmentation techniques have been implemented in 

our training sets. This study employed data 

augmentation techniques, including horizontal 

flipping44, to generate more images with lesions. 

Horizontal flipping, as a geometric transformation in 

image data augmentation, refers to mirroring an 

image horizontally. It involves flipping an image 

across a vertical axis, creating a mirror image of the 

original by reversing the left and right sides. This 

technique is part of the fundamental data 

manipulation methods used to enhance datasets. In 

horizontal flipping, Data augmentation is 
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implemented for each slice in the training set to 

generate more samples by  the original image flipped 

or mirrored left to right, generating a new image that 

is the horizontal reflection of the initial image. 

Following the implementation of data augmentation 

techniques, the training set has been expanded to 

include total slices. Similarly, the test set now 

comprises 1001 CT slices. The data set's size grew 

around 83.6% and 83.5% for the training and test 

sets, respectively. 

 

Proposed Network Architecture for 

Segmentation of the Lung and Lesions 

   The Generative Adversarial Network ( GAN ) 

model13, initially proposed by Goodfellow et al. In 

2014, it was extensively utilized in image processing. 

These models are employed to transform input 

images into their corresponding output images. The 

GAN framework comprises two separate networks: 

a generator and a discriminator. The Generator is 

responsible for synthesizing high-fidelity images, 

while the Discriminator's role is to differentiate 

between synthetic and authentic photos from the 

training dataset, classifying them as either fake or 

real. The methodology employed entails the 

utilization of a min-max strategy by Generator G in 

conjunction with the Discriminator. The goal is to 

transform a collection of noise samples, denoted as 

z, that follow the distribution into actual data that 

aligns with the distribution. 𝑝𝑑𝑎𝑡𝑎. During the 

training phase, the discriminator network aims to 

distinguish between actual data samples y, which 

follow the probability distribution. 𝑝𝑦 , and modified 

data samples G(z), which conform to the distribution 

𝑝𝑑𝑎𝑡𝑎. The mathematical representation of the 

objective function for the min-max GAN is as 

follows: 

 

    𝑚𝑖𝑛𝐺 𝑚𝑎𝑥𝐷 L𝐺𝐴𝑁(G, D) = 𝑚𝑖𝑛𝐺 𝑚𝑎𝑥𝐷 𝐸𝑦~𝑝𝑦
[ 

logD(y)]+𝐸𝑧~𝑝𝑧
[log(1-D(G(z)))]                           1 

 

The symbols E and log represent the mathematical 

operations of expectation and logarithm. The 

previous output of the Generative Adversarial 

Network demonstrates a notable level of ambiguity, 

which prevents its ability to generate the desired 

objects. In 2014, Mirza and colleagues proposed 

using Conditional Generative Adversarial Nets 

(CGAN)14 as a potential solution to a specific 

problem. This approach involves the generation of 

output data x using a generator G, which utilizes real 

data y and a random noise vector z. The given 

expression can be G: {y,z} → x. Meanwhile, the 

Discriminator of CGAN, referred to as D, takes the 

generated and real data (x and y) as inputs and aims 

to distinguish between them. The mathematical 

formulation of the objective function for Conditional 

Generative Adversarial Networks (C-GAN) is as 

follows: 

 

L𝐶𝐺𝐴𝑁 (G, D)=𝐸𝑥~𝑝𝑥
, 𝑦~𝑝𝑦

 

[logD(x,y)]+𝐸𝑦~𝑝𝑦
, 𝑧~𝑝𝑧

[log(1-D(y,G(y,z)))]                                     

2 

 

The Conditional Generative Adversarial Network 

(CGAN) technique is used in the current study to 

segment the lung and lesions in COVID-19. The CT 

scans are input for the Generator, designed to 

produce a corresponding lung mask depending on the 

predicted outcome. The Discriminator accepts two 

sets of inputs: the actual pair (the original chest C.T. 

scan and its related ground truth lung mask) and the 

fake pair (the original chest C.T. scan and the 

synthesized lung mask). The training method for the 

Generator and Discriminator is adversarial, as 

illustrated in Fig. 3. The Generator tries to fool the 

Discriminator by generating progressively realistic 

images of a lung mask. At the same time, the 

Discriminator attempts to distinguish between 

genuine and fake photos. The Generator, denoted by 

G, takes an input image of a chest C.T. scan, denoted 

by y, and produces a synthesized segmented mask 

image, denoted by G(y). At the same time, The 

Discriminator indicated that D's primary aim is to 

distinguish between two sets of photographs. The 

first set consists of a synthetic picture (y) and a 

ground truth mask image, whereas the second set 

consists of a synthetic image (y) and a generated 

image (G(y)). 
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Our proposed network, UCGAN-net, is designed 

to accurately segment the lung's affected region from 

C.T. images. This segmentation is achieved by 

utilizing Conditional Generative Adversarial 

Networks (CGAN) with an adapted architecture for 

the Generator and Discriminator. The generative 

network learns the ability to identify our Region of 

Interest ( ROI ) and generates a binary mask that 

precisely delineates its boundaries. On the other 

hand, the Discriminator learns the ability to 

distinguish between authentic segmented masks and 

artificial ones. Our proposed CGAN architecture 

(UCGAN-net ) is inspired by Unet10  and the Patch-

GAN45 models focusing on convolutional layers for 

extracting low and high-level features from input 

images, where the proposed deeper a U-Net has been 

used instead of an autoencoder as the Generator's 

backbone to preserve low-level and textural 

information also, the Discriminator has been 

changed to Patch-GAN capable of handling large 

images based on the fixed-size patch discriminator. 

 

Generator Network with skip connection: 

    The research employed a convolutional encoder-

decoder architecture for the generator network, 

which resembles Unet10 and allows it to perform 

style transfer based on paired training images while 

preserving the pixel-wise characteristics of the 

source image by combining high-level semantic and 

detailed pixel information. 

The generator structure consists of three primary 

components: the encoder, the bottleneck, and the 

decoder. To enhance the accuracy of UNet in 

generating segmentation maps, our Generator has 

been improved by augmenting the number of layers 

in the encoder. Specifically, an encoding section that 

adheres to the conventional architecture of 

convolutional neural networks, consisting of seven 

encoder blocks instead of the original four blocks in 

the Unet10 architecture, has been incorporated. Every 

encoder block processes an input image by applying 

a single convolutional layer, followed by batch 

normalization and a leaky rectified linear unit with a 

slope of 0.2. In contrast to the original UNet, all max-

pooling layers have been eliminated. After each 

block, the kernels are doubled by two to enhance the 

architecture's ability to effectively learn complex 

structures. The bottleneck part serves as the 

intermediary between the contraction and expansion 

layers. Its structure consists of a single 4x4 

convolutional layer with a stride of 2x2, which is 

then followed by a ReLU activation layer. These 

connections are commonly known as skip 

connections. The expansion part, similar to the 

contraction section, consists of seven blocks. Within 

each decoder block, the input image undergoes a 

sequence of operations: a deconvolutional layer, 

batch normalization, a dropout layer, concatenation, 

and an activation layer. In our suggested Model, 

various techniques are employed, such as batch 

normalization and dropout, to mitigate the issue of 

overfitting. In contrast to the encoder blocks, the 

number of feature maps is halved to preserve 

symmetry. The input for the relevant contraction 

layer is concatenated in the concatenate layer. This 

Figure 3. Structure of the Conditional Generative Adversarial Network for 

segmentation of lungs (training phase) 

https://doi.org/10.21123/bsj.2024.9335
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guarantees that the captured features during the 

contraction phase are utilized to reconstruct the new 

image. 

The number of encoder blocks corresponds to the 

number of decoder blocks. Subsequently, the output 

from the expansion block is sent into another 

deconvolutional layer, which adjusts the number of 

feature maps to match the desired number of 

segments or classes. The convolutional and 

deconvolutional layers both employ a 4x4 kernel and 

a 2x2 stride, resulting in the reduction and expansion 

of the feature maps, respectively. Fig.  4 depicts this 

architecture. Using the deeper UNet architecture in 

the Generator of UCGAN NET provides several 

benefits. One key advantage is its ability to handle 

large amounts of spatial information, making it well-

suited for medical image segmentation tasks where 

the input images can be very large. 

    Additionally, the symmetrical architecture of the 

U-Net enables the efficient transfer of information 

from the down-sampling path to the up-sampling 

path, preserving fine details such as texture and 

object boundaries, of the segmentation mask. The U-

Net also includes skip connections, which are 

implemented by concatenating activation from an 

earlier layer to the activation of a deeper layer. This 

allows the network to access high-level and low-

level features, providing a complete representation of 

the input image. The skip connections also help 

capture long-range dependencies in the data by 

combining features from the contracting path with 

those from the expanding path. 

 
Figure 4. The architectural diagram shows the generator network utilized within the UCGAN 

framework. 
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Discriminator Network: 

     The Discriminator evaluates the authenticity of a 

given binary mask by determining whether it is real 

or generated. Specifically, the employed 

Discriminator in this study is referred to as a Patch-

GAN45, which partitions the input image into a 

collection of patches and assigns a single scalar 

output to each Patch. Unlike a traditional image 

discriminator that predicts the full image, a patch 

discriminator predicts each Patch and the final 

prediction is obtained by averaging all the patch 

predictions. Additionally, our patch discriminator 

requires fewer parameters, demonstrates robust 

performance with large and blurry images, and has a 

shorter computational time. Our Model utilizes a 

patch discriminator with a patch size of 70x70 pixels, 

resulting in the highest image sharpness in both 

spatial and spectral domains. The implemented 

Model takes two input images that are concatenated, 

and Gaussian noise with a standard deviation of 0.2 

is introduced to the concatenated input before 

entering the initial hidden layer to mitigate 

overfitting. The structure of our Discriminator 

includes three hidden layers, followed by batch 

normalization and leaky ReLU. The convolutional 

layers consist of filters with dimensions of 4x4 and a 

stride of 2x2. Furthermore, the Discriminator is 

subjected to regularization by imposing constraints 

on the magnitudes of its gradients through the 

utilization of L1 regularization. Hence, an L1 

regularizer is incorporated into every convolutional 

layer. 

The final block within the Discriminator produces a 

patch of dimensions 30×30x1, wherein each pixel of 

this Patch serves to classify a distinct section of the 

input image. The Leaky Rectified Linear Unit 

(ReLU) is frequently utilized as an activation 

function in all layers. Except for the last layer, it is 

substituted with a sigmoid function. Fig. 5 presents 

an architectural schematic depicting the 

discriminator network employed in the UCGAN Net. 

 

 
Figure 5. The structure diagram of the discriminator network utilized in our UCGAN framework 

https://doi.org/10.21123/bsj.2024.9335
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Loss Functions 

     One of the primary challenges encountered in 

training Generative Adversarial Network (GAN) 

models relates to establishing a suitable formulation 

for the loss function. The loss function is utilized to 

compute the distinction between the observed and 

expected values. Various objective functions were 

integrated to achieve network optimization to derive 

the ultimate loss function. Our UCGAN's objective 

function incorporates both an adversarial loss 

function and a pixel-wise loss function L1, which 

serves to penalize segmentation errors. Here, the 

Generator, G, is trained to minimize the objective, 

while the Discriminator, D, is trained to maximize 

the objective. Therefore, Eq. 3 can be expressed as 

follows. 

 

        G*= 𝑎𝑟𝑔𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷L𝐶𝐺𝐴𝑁(G, D)        3 

 

G transforms lung CT scans into accurate masks to 

minimize the cross-entropy loss of D. The 

adversarial loss can be interpreted as a form of 

structured loss, where G is penalized if the 

anticipated masks contain unrealistic pixels.  

The final objective adds the L1 loss term to Eq. 3 

because the Generator aims not only to fool the 

Discriminator but also to minimize the pixel loss 

between the real and synthetic images. The L1 loss 

function (Eq. 4), also known as the least absolute 

error, minimizes the sum of  errors, and it is chosen 

here because it preserves sharp edges and produces 

less blur in  the generated images 45: 

 

L𝐿1(G) = 𝐸𝑥,𝑦,𝑧 ‖y-G(x, z)‖1                                              4 

 

Therefore, adding Eq.  4  to Eq. 3 gives the final 

objective used in this study in Eq. 5. 

 

𝐿𝑜𝑠𝑠𝑈𝐶𝐺𝐴𝑁 𝑁𝐸𝑇 = 𝑎𝑟𝑔𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷L𝐶𝐺𝐴𝑁(D, G) + λ 

L𝐿1(G)                                                 5 

 

The hyper parameter λ determines the magnitude of 

the L1 error weight 45 . 

 

This combination of loss functions, adversarial loss 

(for global consistency), and pixel-wise loss (for 

fine-grained details) can contribute to achieving the 

described characteristics and helps make the Model 

contextually aware and globally consistent. The loss 

functions included in our Model isolate the region of 

interest and its complex boundaries. Similarly, they 

serve as optimization techniques for extracting 

region, edge, and spatial features in both the encoder 

and decoder components of the Model. 

 

Experimentations 

Model Training and Testing   

    The Generator and Discriminator are concurrently 

optimized, with the Generator acquiring the ability to 

generate a plausible binary mask while the 

Discriminator develops the skill to distinguish 

between generate and authentic segmentation. Our 

UCGAN generator employs two methods to update 

its weights in the convolutional filters during 

training. The first method involves an internal circuit 

that utilizes an enhanced backpropagation technique 

through skip connections. The second method 

involves an external path, as shown in Fig. 3, which 

supplies the Generator with comparison results 

between the ground truth and the fake images 

generated by the Discriminator. Consequently, the 

Generator acquires the ability to generate 

segmentation maps that closely resemble the target 

images. Our study utilized two datasets: the training 

and testing sets were obtained from the COVID-19 

CT Lung and Infection Segmentation Dataset36. This 

dataset was used to train and evaluate the proposed 

ECGANCOVID Network, where the training set 

consisted of 90% of the total images, while the 

testing set comprised the remaining 10%. Also, the 

COVID-19 CT segmentation dataset 16 was utilized 

as an external dataset in our study to evaluate the 

quantification performance of our Model. 

The training phase of our Model utilizes the Adam 

optimizer46  as the optimizer for training weights; the 

objective is to minimize the segmentation loss 

function. The lung and lesion segmentation networks 

are trained with a learning rate of 2 x 10−4, the 

momentum of β1 of 0.5 and β2 of 0.999, and a batch 

size of 10. The optimization process typically takes 

around 50 epochs to achieve convergence. Our 

codebase is implemented in Python, making use of 

the TensorFlow libraries. The experiments utilize a 

total of 16 gigabytes of random access memory 

(RAM), an Intel Core i7 processor operating at a 

frequency of 2.30 gigahertz, and a dedicated graphics 

processing unit (GPU) with 8 gigabytes of memory, 

specifically the NVIDIA GE-FORCE RTX model. 

Table 4 contains the training parameters of the 

UCGAN-Net utilized in the research. 
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Table 4. Training parameters for UCGAN-Net 
Optimizer Adam 

Number of epochs 50 epochs 

Loss functions Binary cross entropy loss and L1 Loss 

Momentum of β1  0.5  

Momentum of β2 0.999 

Batch size 10 

Learning rate 0.0002 

λ 100 

patch size 70x70 

 

Evaluation Metrics 

   Quantitative evaluations have been conducted to 

assess the proposed approach's performance in lung 

segmentation and infection segmentation tasks. The 

assessment of the segmentation tasks was done at the 

pixel level. In this evaluation, the positive class was 

defined as the foreground, which includes the lung or 

infected region. In contrast, the negative class was 

defined as the background.  

Multiple major performance parameters were 

examined to evaluate the Model's effectiveness in 

effectively segmenting COVID-19 infections inside 

the lung. The metrics encompassed in this work 

consist of the dice similarity coefficient (DSC), 

intersection over union (IoU), Sensitivity, 

specificity, and Precision.  

Evaluating medical image semantic segmentation, 

performance often involves using commonly 

employed metrics such as DSC and IoU. The 

concepts of Sensitivity and Specificity are utilized to 

assess the Model's capacity to differentiate between 

positive and negative pixels. Precision pertains to the 

Model's ability to make accurate predictions. The 

evaluation metrics are defined in the following 

manner: 

 

IntersectionioveriUnioni(IoU)i=iii

TPi

TPi+iFPi+iFN
               6 

 

DiceiSimilarityiCoefficienti(DSC)=i

2TPi

2TPi+iFPi+iFN
       7 

The statistical metrics IoU and DSC are utilized to 

evaluate the spatial overlap between binary ground 

truth and anticipated segmentation masks. 

Nevertheless, a notable distinction exists in that DSC 

provides a higher weight to T.P. pixels (representing 

accurate lung/lesion predictions) than IoU.  

Accuracyi=i

TPi+iTN

TPi+iTNi+iFPi+iFN
                                                8 

Accuracy can be defined as the ratio of accurately 

classified pixels to the total number of pixels in an 

image.                                                    

 

 Precisioni=i𝑖
TPi

TPi+iFP 
                                                              9                                                  

 Sensitivityi=i

TPi

TPi+iFN
                                                          10 

Specificityi=iiii

TNi

TNi+iFP 
                                                        11 

The proportion of correctly predicted positive 

samples to the total number of positive class samples 

is called Sensitivity. Precision is a parameter that 

evaluates the percentage of correctly categorized 

positive class C.T. samples among all positive class 

C.T. samples. The proportion of accurately predicted 

negative class samples to the total number of 

negative class samples is referred to as specificity. 

The segmentation model with the highest dice 

similarity coefficient and IoU score is considered the 

best. Higher accuracy and Corona sensitivity are 

desirable in a classification model. 

    Fig. 6 illustrates the confusion matrix that may be 

constructed for the anticipated mask, which matches 

the C.T. slice. This matrix is used to calculate the 

aforementioned metrics based on correct predictions. 

P and G indicate the anticipated and ground-truth 

masks, respectively. In this context, TP (True 

Positive) indicates the count of correctly identified 

lung or infected pixels, TN (True Negative) signifies 

the count of correctly identified non-lung or 

uninfected pixels, FP (False Positive) corresponds to 

the count of infected or lung pixels erroneously 

identified as non-lung or non-infected pixels, and FN 

(False Negative) denotes the count of non-lung or 

uninfected pixels that are erroneously classified as 

lung or infected pixels. 

https://doi.org/10.21123/bsj.2024.9335
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Figure 6. The confusion matrix, as well as  Evaluation metrics 

 

Results and Discussion                                                                                                                         

   This section presents the quantitative results of the 

lung and lesion segmentation models and a 

comprehensive ablation study. Additionally, our 

Model was evaluated on a separate and independent 

test set. Finally, the proposed ECGANCOVID -Net's 

performance (that includes both UCGAN-Net1 and 

UCGAN-Net2) was compared with other deep 

models in previous studies.  

 

Lung Segmentation 

     The framework under consideration, called 

ECGANCOVID-Net, comprises two main 

components: UCGAN-net1, responsible for lung 

segmentation, and UCGAN-net2, responsible for 

infection segmentation. This framework is visually 

depicted in Fig. 1. The purpose of these networks is 

to effectively and precisely delineate the boundaries 

between the lung and areas affected by infection in a 

provided C.T. picture. The main usage of the output 

from U-CGAN-net1 is in the post-processing phase, 

where it is employed to improve the performance of 

UCGAN-net2 and achieve precise localization of the 

infected region within the C.T. image. Therefore, the 

segmentation of the lungs plays an essential part as a 

pre-processing step in this process. 

In this study, the UCGAN-net1 model has been 

applied to enhance the Precision of the cropped lung 

regions in our proposed method. Table 5 presents a 

comprehensive overview of the quantitative 

outcomes obtained from the proposed Model for lung 

segmentation; it has been repeated in 50 epochs with 

batch size ten and achieved the DSC, IoU , 

Sensitivity, Specificity, and Precision, are 0.975, 

0.9538, 0.9750, 0.9983, and 0.9766, respectively 

which is demonstrated in it. 

 

Table 5. The quantitative outcomes of the 

UCGAN Net1 model on the test set derived from 

the COVID-19 CT Lung and Infection 

Segmentation Dataset. 
DSC(%) IOU(%) SENS. 

(%) 

Speci.(%) Pre.(%) 

  97.5  95.4  97.5   99.8   97.7 

 

Table 6 demonstrates that our lung segmentation 

network can enhance the original segmentation 

performance of the Dice Similarity Coefficient by 

3.6%. Additionally, compared to other state-of-the-

art segmentation models, it achieves improvements 

of 6.4%, 1.0%, and 8.3% in terms of Intersection 

over Union (IOU), Specificity, and Precision. 

 

Table 6. Comparison of the lung segmentation outcomes achieved by employing the most advanced 

deep-learning models and the proposed UCGAN Net1. (The most optimal outcomes are presented in 

bold formatting.) 

Architecture DSC(%) IOU(%) SENS. (%) Speci.(%) Pre.(%) 

UNET 53.9 42.1 80.8 74.3 42.3 

ATTEN  RES UNET 93.6 88.5 99.5 98.8 88.7 

ATTEN UNET 93.9 89.0 99.3 98.8 89.4 

UCGAN NET1(ours) 97.5 95.4 97.5 99.8 97.7 
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Despite the significant impact of COVID-19 on the 

lungs, the trained Model successfully achieved 

accurate segmentation of the lung boundaries, as 

demonstrated in Fig. 7. This outcome underscores 

the strong performance and reliability of this study's 

proposed lung segmentation model. 

 

 
Figure 7. The first row of the shown images consists of C.T. images, while the second row represents 

the ground truth. The subsequent rows (3-6) display the segmentation masks generated by three 

networks and our network. Additionally, the dice score values for each segmentation mask are 

provided 

COVID-19 Lesion Segmentation: 

    To illustrate the impact of each component on the 

performance of the proposed Model, an ablation 

study was conducted. Initially,  the Model was 

trained without integrating the first UCGAN1 NET 

into the architecture of ECGANCOVID-NET. 

Subsequently,  UCGAN1 NET was integrated into 

our Model but excluded the use of the Horizontal 

flipping data augmentation technique. Finally,  the 

performance of the proposed Model trained with data 

augmentation has been examined. 

Table 7 presents the results of different 

configurations of the examined models. The baseline 

model yielded DSC and IoU scores of 76.0% and 

65.5%, respectively. This initial assessment suggests 

the potential for improving model performance 

through the implementation of a hierarchical 

segmentation strategy using cascaded UCGAN-Nets 

models. Rather than directly segmenting the 

COVID-19-infected area, our approach generates 

lung contour maps from the predicted lung mask. 

These contour maps are subsequently utilized as 

input for another UCGAN-Net model to accurately 

localize the infected regions. In the case of infection 

segmentation by hierarchical segmentation 

(ECGANCOVID), the DSC improves by 7.3% 

compared to the direct segmentation model. 
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Expanding our dataset and training our Model on it 

achieved gains of 8.5% and 13% in DSC and IoU 

scores, respectively, when compared to the baseline 

model. This demonstrates the positive impact of 

dataset expansion and training on enhancing the 

Model's segmentation performance. 

  

Table 7. Ablation study on our model test results 

Models used DSC% IOU% SENS. % Pre. % 

Direct segmentation (U-CGAN Net) 76.0 65.5 73.8 81.7 

Hierarchal segmentation( ECGANCOVID Net) 

Without data augmentation  

83.3 73.6 79.8 89.7 

Hierarchal segmentation( ECGANCOVID Net) 

With data Augmentation 
84.5 78.5 84.6 85.8 

 

     The DSC of 84.5 and IOU of 78.5 for COVID-19 

lesion segmentation demonstrate a significant level 

of Precision in our Model's capacity to detect and 

delineate lesions. Within a clinical context, these 

metrics are essential as they indicate the Model's 

efficacy in accurately detecting and delineating the 

actual extent of lesions in relation to the ground truth. 

A greater DSC and IOU indicate a stronger 

correspondence between the Model's predictions and 

the real lesions. The clinical utility of such 

performance is significant where Healthcare 

professionals rely on accurate segmentation for 

various purposes, including disease diagnosis, 

treatment planning, and monitoring disease 

progression. 

Among the several evaluation metrics, it is observed 

that the Precision metric yields a value of 85.8, 

signifying that the Model produces around 14% 

erroneous positive predictions when applied to the 

test set. Additionally, it is noteworthy that the metric 

sensitivity value of the ECGANCOVID model is 

considerably greater than other measures. This 

suggests that the Model performs better in accurately 

identifying and localizing the intricate patterns 

associated with the infection. 

     The exceptional performance across DSC, IOU, 

Precision, and Sensitivity metrics enhances the 

clinical utility of the Model. It suggests that the 

Model is accurate, reliable, and effective in lesion 

segmentation, providing valuable information for 

clinicians to diagnose and treat COVID-19 cases. 

 

Table 8. A comparative analysis evaluates the test results of both state-of-the-art and proposed 

models. The test set utilized in this analysis is obtained from the COVID-19 CT Lung and Infection 

Segmentation Dataset36 . 

Architecture DSC(%) IOU(%) SENS. (%) Pre.(%) 

ATTEN  RES  UNET 77.8 65.9 78.0 81.1 

ATTENTION UNET 74.8 63.1 72.9 80.5 

ECGANCOVID Net(ours) 83.3 73.6 79.8 89.7 

 

    Furthermore, the obtained results are compared to 

various advanced segmentation models, as shown in 

Table 8. The ECGANCOVID-Net approach 

outperformed other techniques, significantly 

enhancing evaluation metric values. The Dice 

Similarity Coefficient (DSC) and Intersection over 

Union (IOU) scores quantify the degree of overlap 

between the predicted lesions and the actual ground 

truth. Higher scores of our Model indicate precise 

delineation of lesions, providing crucial information 

for diagnosis and treatment planning. Our Model's 

Precision, at 89.7%, underscores its ability to reliably 

identify positive cases (lesions) and reduce the 

occurrence of false positives in clinical scenarios 

compared with other baseline models. The increased 

Precision of the Model enhances its reliability in 

generating accurate predictions, which is crucial for 

clinical decision-making. 

ECGANCOVID Model's high Sensitivity augments 

its utility in detecting lesions, which is particularly 

important for early detection and appropriate 

treatment of COVID-19-related lesions. These 

measures collectively affirm that the 

ECGANCOVID Model is clinically valuable and 

successful in accurately segmenting lesions. 

     Fig.  8 shows the segmentation networks' 

prediction samples. The results collected 

demonstrate our Net's better performance than other 

networks. The ATTENTION UNET and Direct 

segmentation (UCGAN Net) have shown the ability 
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to segment large lesions accurately. Nonetheless, the 

performance of both models on tiny lesions is 

mediocre. On the other hand, the ECGANCOVID-

NET outperformed in accurately identifying small 

lesions in the cases presented in Fig. 8 (second, 

fourth, fifth, and seventh). 

Furthermore, the segmentation performance of 

ATTENTION RESIUAL UNet is better than theirs, 

but the error rates of these three models on 

boundaries are still very high. Compared with these 

three typical models, the overall performance of our 

Model on small lesions is better. 

 
Figure 8. displays the prediction outcomes of various representative models. In this study, the C.T. 

image was denoted as A, the ground truth as B, the results of Attention UNet as C, the results of 

Attention Residual UNet as D, the results of direct segmentation using UCGAN Net as E, and the 

results of hierarchical segmentation using ECGANCOVID Net as F. 
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Assessment of the ECGANCOVID Model's 

Generalization :  

     After training the two UCGAN networks and 

integrating the entire analysis pipeline into the 

ECGANCOVID system, a separate set of unseen 

data that was not used during training was utilized to 

assess the generalization capabilities of the Model, 

specifically the COVID-19 CT segmentation dataset 
37. External validation with an unseen dataset is a 

crucial step to verify the reliability and effectiveness 

of ECGANCOVID-Net in real-world applications 

beyond the training data. The main objective is to 

assess how well the Model generalizes its learned 

patterns to new, unseen instances, gauging its ability 

to handle data previously exposed.  

     The performance metrics for the entire process 

were quantified using measures such as DSC, IOU, 

Precision, and Accuracy (refer to Table 9). During 

our observation, a perfect overlap was noted between 

the predicted and reference lesion masks regarding 

the Dice Similarity Coefficient (DSC) and 

Intersection over Union (IOU) achieved by our 

Model. The metrics for infection segmentation show 

an improvement of 14.9% and 15.0%, respectively. 

However, it is worth noting that the precision metric 

has the lowest value, indicating that the 

ECGANCOVID model generates approximately 

37% of false positive predictions from the external 

test dataset compared to other baseline segmentation 

models. Fig. 9 visually compares the lung and lesion 

masks generated by the ECGANCOVID Net and the 

reference masks. 

 

Table 9. Comparison of test results obtained from two of the most effective baseline segmentation 

techniques and our proposed approach in the context of COVID-19 lesion segmentation on an external 

dataset 37. 

Architecture DSC(%) IOU(%) Prec(%) ACCU.(%) 

ATTEN  UNET 45.3 32.5 38.2 97.5 

ATTEN  RES  UNET 54.8 41.8 46.4 98.0 

ECGANCOVID NET(our) 69.7 56.8 62.6 99.2 
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Figure 9. The rows display five samples (patient 1, patient 3, patient 4, patient 5, and patient 9) 

obtained from the COVID-19 CT segmentation 37 test dataset. The columns consist of the following: 

the original images are displayed on the left side. At the same time, the overlays between the predicted 

lung masks and the reference lung masks are shown in the center column. Lastly, the overlays between 

the predicted COVID-19 lesion masks and the reference COVID-19 lesion masks are displayed in the 

right column. The reference masks are shown in green, while the anticipated masks generated by the 

ECGANCOVID system are represented in blue. 
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Comparison of  ECGANCOVID Model  with 

Prior Works:  

      To perform a comprehensive assessment, our 

results were compared with those obtained by other 

researchers using the same publicly available dataset. 

The relevant work was organized and condensed in 

Tables 10 and 11. Our model outperforms all other 

models with a DSC of 84.5%, Precision of 85.8%, 

and Specificity of 99.9%. The authors in 47 developed 

a novel neural network architecture, CHS-Net 

(COVID-19 hierarchical segmentation network), 

specifically designed for COVID-19 infection 

segmentation. CHS-Net and ECGANCOVID-NET 

were trained on 2D CT scans and achieved COVID-

19 infection segmentation DSCs of 0.816 and 0.845, 

respectively. It is important to mention that  CHS-

Net is based on a UNet with two cascaded residual 

attention inception UNet networks in a sequence of 

encoder-decoders for Corona infection 

segmentation. Our model  was able to outperform the 

CHS-Net network and addressed the problem 

presence of false positives in the results produced by 

it, which generated approximately 25% of false 

positive predictions using hybrid loss functions in 

ECGANCOVID, where our model successfully 

reduced number of false positive predictions by 11%.  

Based on the Ma et al. dataset36 , ECGANCOVID 

achieved a specificity of 99.9%, outperforms other 

architectures for COVID-19 infection; this indicates 

our Model's effectiveness in capturing and correctly 

delineating the target region in comparison to the 

total actual pixels in that region. The findings 

presented in Table 11 indicate that utilizing our 

lesion segmentation model on CT images can 

substantially enhance the Model's performance 

where our Model can accurately identify and 

segment 84.6% of the actual positive lesions out of 

the total lesions present in the test dataset. It 

outperformed all other approaches mentioned in 

Table 11 and achieved results close to those in 

references 48,49 . Given the advances in the proposed 

method, The following highlights are to be 

emphasized: 

•  The ECGANCOVID Net architecture exhibits 

good results for segmenting lung parenchyma and 

areas affected by COVID-19, compared with the 

results obtained by related works that employed the 

same public dataset. 

• The proposed method successfully segments areas 

affected by COVID-19, particularly in accurately 

identifying tiny lung lesions from its hierarchical 

segmentation strategy executed via the proposed 

cascaded UCGAN Nets with 70x70 PatchGAN 

architecture. This is extremely useful, providing 

specialists with new perspectives for analyzing the 

lesion. 

• The proposed approach involves training the loss 

function by taking into account the full image rather 

than focusing on pixel-wise loss. This method 

enhances their contextual awareness and promotes 

global consistency. Including L1 loss helps to 

preserve fine details in the generated images and 

Adversarial training contributes to capturing global 

structures and improving the overall visual quality of 

the generated images.  
 

•To avoid overfitting and dealing with required 

paired data for training, data augmentation strategies 

like rotation are used. Model learning had been 

successfully enhanced by 1.50% and 2.90% in the 

Dice Similarity Coefficient for lung and lesion 

segmentation, respectively. 

While the ECGANCOVID model provided better 

results, the question of how to reduce the presence of 

false positive predictions in the results produced by 

our architecture remains an important consideration. 

Table 10. Comparison of our proposed UCGAN Net1 with other deep models in previous studies on 

lung segmentation 

References Year Model (Method) DCS% 

2 2020 3D UNet  and Residual Unet 95.6 
50 2021 3D Unet 95.6 
51 2022 two cascaded deep FCNs 96.1 
47 2022 CHS-Net 96.3 

52 2023 DLShelper 96.0 

Ours  UCGAN net1 97.5 
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Table 11. Comparison of the proposed ECGANCOVID model with other deep models in previous 

studies On COVID-19 infection Segmentation 
References Year Model (Method) DCS Sen. Prec. Spec. 

53 2020 CoSinGAN 61.5 - - - 
33 2020 Semi-Inf-Net 73.9 72.5  96.0 
54 2020 MultiResUNet 74.3 - - - 
2 2020 3D UNet  and Residual UNet 76.1 73.0 - 99.9 

38 2021 3D UNet 67.3 - - - 
55 2021 3D UNet 70.4 68.2 - - 
56 2021 D2A UNet 72.98 - - - 
57 2021 LCFCN 75.0 86 - 97 
50 2021 3D UNet 80.4 - - - 
48 2021 MiniSeg segmentation network 76.3 85.06 - 99 
49 2021 3D CU-Net 77.1 83.7 - 99.8 
58 2021 PSGR UNet, PSGR U2Net 78.6 77.83 - 99.8 
59 2021 LungINFseg 80.3 83.1 - 99.5 
47 2022 CHS-Net 81.6 - 75.6 96.9 
60 2022 HADCNet 72.3  69.4 - 99.7 
61 2022 SSA-Net 65.2 - - - 
62 2022 DMDF-Net 75.7 72.78 - 99.8 
51 2022 two cascaded deep FCNs 78.0 82.2 - 95.1 
63 2023 U2 -Net+PSGR module 78.6 77.83 - 99.8 
64 2023 SELDNet 79.1 76.3 - 96.7 
65 2023 Cov-TransNet 80.3 77.2 84.2 99.5 

Ours  ECGANCOVID 84.5 84.6 85.8 99.9 

 

Limitation: 

   Obtaining extensive data for effective training is 

crucial to ensure the Model's robustness. One of the 

limitations of this study is the scarcity of publicly 

available annotated imaging datasets which have  

diverse imaging data, including various COVID-19 

states, other pneumonia cases, healthy control 

samples, and comprehensive clinical and laboratory 

information). This makes the current segmentation 

approach in our research biased due to it is only 

trained with COVID-19-related images for lung 

lesion segmentation that is used as the first step of 

severity assessment and prediction of COVID-19 

patients since COVID-19 has close similarities with 

viral pneumonia diseases like influenza, and other 

pneumonia, or entirely unrelated medical conditions 

like cancer, eliciting distinct features for diagnosed 

task a great challenge. So the patients with COVID-

19 needed to be diagnosed with various features 

along with  Chest CT scan images such as clinical 

and laboratory features. To guarantee the robustness 

and comparability of models, building 

comprehensive, accepted public benchmark datasets 

is essential. 

 

Conclusion 

   One of the biggest problems in the localization of 

lesion areas task is the identification of boundaries 

that arise due to the image resolution, where The 

organ's tissues appearing in the CT scan may lead to 

mixing the categories of pixels. To tackle this 

problem, an approach called ECGANCOVID-Net, a 

hierarchical segmentation network that detects 

regions affected by COVID-19 in lung contour maps 

obtained from computed tomography (C.T.) images, 

has been proposed. The proposed method consists of 

two cascaded UCGAN Net models that employ the 

adversarial terms in training, and it foists higher-

order spatial consistency instead of spatial 

contiguity. The UCGAN model enhances the 

performance of a conditional generative adversarial 

network by incorporating advanced components to 
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modify its Generator and Discriminator. Our Model 

was trained successfully on chest C.T. photos and 

corresponding ground truth masks for lung and 

lesion, obtained from a publicly available dataset 

known as the COVID-19 CT Lung and Infection 

Segmentation Dataset. 

  To demonstrate the effectiveness of our 

methodology, an ablation analysis was performed to 

assess the Model's performance. Furthermore, a 

comparative analysis of the performance of our 

proposed methodology with several popular baseline 

architectures utilized for COVID-19 segmentation, 

including Unet, attention Unet, and Atten res Unet, 

has been conducted. Additionally,  our results were 

compared with those obtained by other researchers 

who employed the same publicly available dataset. 

The experimental findings showed that the suggested 

Model has improved performance in segmenting 

areas affected by COVID-19, particularly in 

accurately identifying tiny lung lesions. 

   The ECGANCOVID-Net model, after 

implementing data augmentation techniques, has 

demonstrated notable performance in various 

evaluation metrics and higher localization 

performance with  84.5% DSC, while the IOU 

(Intersection over Union) score achieved 78.5%. 

Additionally, the precision score obtained a value of 

85.8%, indicating that the Model generated 

approximately 14% false positive predictions from 

the test set. Moreover, the Model exhibited a 

COVID-19 sensitivity of 84.6%, surpassing the 

performance of other existing models.  

     The suggested methodology can potentially be a 

valuable tool for healthcare professionals in 

managing COVID-19 because it offers the 

opportunity for quantitative assessment and disease 

monitoring as applications in clinical studies where 

our Model is used as the first step of severity 

assessment and prognosis prediction of COVID-19 

patients. Therefore, our system could facilitate early 

intervention and provide a unified solution that helps 

physicians assess the severity and track the 

progression of the illness. 

    In the future, this study could be expanded in 

several aspects. To enhance the portability and 

robustness of the model, training and testing could be 

conducted using a larger dataset. Hierarchical data 

augmentation techniques could be employed to 

address the challenges posed by small datasets, and 

modifications to the architecture of ECOVIDCGAN 

could be implemented. For instance, changes to loss 

functions and the CNN-based Generator and 

Discriminator could design a comprehensive system 

for automatic localization, segmentation, and 

analysis of COVID-19 pneumonia lesions. 

Furthermore, extending ECOVIDCGAN lesion 

segmentation into a hybrid deep-learning model for 

infection quantification and detecting high-risk 

COVID-19 patients based on CT images and clinical 

and laboratory features could be explored. 
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:ECGANCOVID  بنية شبكة الخصومة التوليدية المشروطة الفعالة لتجزئة مرض كوفيد-

19  

 1د. اسراء هادي علي .أ،  2،1بيمان حسين حسن 

 .مات، جامعة بابل ، بابل، العراقلوالبرمجيات، كلية تكنلوجيا المعقسم 1
 ، العراق.كوفة، وسط التقنيةد التقني بابل، جامعة الفرات الاقسم تقنيات أنظمة الحاسوب، المعه2

 

 ةالخلاص

الملايين في جميع ( تهديداً عالميًا، مما يؤثر على SARS-CoV-2) 2تشكل متلازمة الجهاز التنفسي الحادة الوخيمة فيروس كورونا 

( يعد بديلاً واعداً، فإن تجزئة CTأنحاء العالم. في حين أن الكشف الآلي عن التهابات الرئة من خلال التصوير المقطعي المحوسب )

المناطق المصابة من شرائح الأشعة المقطعية لا تزال صعبة بسبب حدود العدوى منخفضة التباين والمظاهر غير الواضحة. ولمواجهة 

للكشف عن المناطق المصابة وتحديدها في الصور  ECGANCOVID-Netا التحدي، تم اقتراح نموذج للتعلم العميق يسمى هذ

المقطعية للصدر. يستخدم نموذجنا أداة القطع الهرمي الدلالي للكشف عن مناطق عدوى الرئة الناجمة عن فيروس كورونا في الصور 

، UCGAN-Net1. تم تصميم الشبكة العصبية الأولية، U-CGAN-Netصرين، هما نماذج الطبية المقطعية. ويتكون النموذج من عن

، على الرئتين المجزأتين لتحديد المناطق المحددة UCGAN-Net 2للكشف عن حمة الرئة. وبعد ذلك، تعمل الشبكة العصبية الثانية، 

( التي تتضمن مولداً CGANمن شبكة الخصومة التوليدية المشروطة ) UCGAN-Netبدقة. تتكون شبكة  19-المتأثرة بآفات كوفيد

التجارب  ومن خلال ومميزًا مُكيَّفاً. بالإضافة إلى ذلك، يستخدم نموذجنا تقنيات زيادة البيانات لمعالجة مسألة بيانات التدريب المحدودة.

بالتقنيات المقترحة مؤخرًا. ويتجلى هذا بشكل خاص في الأداء العام  المكثفة، تم اكتشاف أن المنهجية المقترحة تظهر أداءً متفوقاً مقارنة

المقترحة أداءً استثنائياً في تجزئة آفات  ECGANCOVIDالمحسن لنموذجنا عند التحديد الدقيق لموقع الآفات الصغيرة. أظهرت شبكة 

(. بالإضافة إلى ذلك، IOUلتقاطع عبر الاتحاد )وا %84.5( بنسبة DSC، وحققت أداء توطين أعلى مع معامل تشابه النرد )19-كوفيد

 .%69.7، مما أدى إلى معامل تشابه النرد بنسبة الغير مرئية خضع النموذج المقترح للتحقق الخارجي باستخدام مجموعة البيانات

(، تجزئة CGAN، شبكة الخصومة التوليدية الشرطية ) ، صور التصوير المقطعي المحوسب 19-مرض كوفيد الكلمات المفتاحية:

 .ستراتيجية التقسيم الهرميةالرئة والآفات، 
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