Coleus amboinicus Lour. Leaf Extract Has No Effects on the Biochemical Markers but Improves the Liver Histopathological Scores of Septic Rat Model

Mutia Indah Sari*1, R. Lia Kusumawati 2, Yunita Sari Pane 3, Sufitni Sufitni 4

1Department of Biochemistry, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia.
2Department of Microbiology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia.
3Department of Pharmacology & Therapeutic, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia.
4Department of Anatomy, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia.
*Corresponding Author.

Received 13/09/2023, Revised 05/03/2024, Accepted 07/03/2024, Published Online First 20/06/2024

Abstract

Coleus amboinicus Lour. is a herbal plant with immunoregulatory effects due to the polyphenols it contains. This research aims to determine the effects of *Coleus amboinicus* Lour. leaf extract on the biochemical markers and the liver histopathological scores of septic rat model. We used 28 *Rattus norvegicus* rats for the study and divided them into 4 groups consisting of 7 rats each: control (healthy rats without treatment), group 1 (septic rats treated with antibiotics), group 2 (septic rats treated with antibiotics and 250 mg/kg body weight of *Coleus amboinicus* Lour. leaf extract), and group 3 (septic rats treated with antibiotics and 500 mg/kg body weight of *Coleus amboinicus* Lour. leaf extract). We measured the serum glucose, aspartate aminotransferase (AST), alanine aminotransferase (ALT), urea, and creatinine levels, as well as the liver histopathological scores, to assess the improvement. Results showed a decrease in the serum glucose, AST, ALT, urea, and creatinine levels of the rat groups given *Coleus amboinicus* Lour. leaf extract compared to the rat group given only antibiotics, though the decrease was not significant (p = 0.393; p = 0.064; p = 0.961; p = 0.288; p = 0.119, respectively). However, there was a significant decrease in the liver histopathological scores of the rat groups given *Coleus amboinicus* Lour. leaf extract compared to the rat group given only antibiotics (p = 0.003). To conclude, *Coleus amboinicus* Lour. leaf extract administration has no significant effect on the biochemical markers but improves the liver histopathological scores in septic rat model.

Keywords: Coleus amboinicus Lour, Herbal, Histopathology, Organ dysfunction, Sepsis.

Introduction

Sepsis is one of the global health challenges and contributes to half of hospital deaths, above stroke and myocardial infarction.1 In sepsis, the dysregulated immune response to infection can lead to multiple organ dysfunction, causing death. Each organ dysfunction adds to the risk of death. Currently, the definition of sepsis emphasizes the presence of organ dysfunction.2,3 A decrease in renal function is often found in sepsis.4 Up to 60% of septic patients are affected by acute kidney injury (AKI).5 However, the association between organ dysfunction and mortality in sepsis depends on the affected organ. A retrospective
analysis conducted in Catalonia shows that although hepatic failure is a less frequent organ dysfunction in sepsis, it is associated with a high mortality rate.1

Intravenous broad-spectrum antibiotics have been the standard therapy for sepsis.6 However, there is a lack of supportive therapy for sepsis-associated organ dysfunction. Current supportive therapy consists of supplemental oxygen, mechanical ventilation, and dialysis.7 Meanwhile, extracorporeal liver assist devices are not considered a standardized organ support measure for liver dysfunction.8 Therefore, there is a need for effective supportive therapy.

Herbal plants have been used as a co-treatment with antibiotics in sepsis. Administering XueBiJing, a Chinese herbal medicine, has been shown to alleviate liver and renal injury in rats with its immunoregulatory effect.9 Similarly, ginger has been reported to attenuate organ injury and enhance survival rate in septic mice through immunoregulatory mechanisms.9

Coleus amboinicus Lour. or *Plectranthus amboinicus* Lour. Spreng is a herbal plant known for its therapeutic properties and has been widely used in folk medicines.10 The polyphenols within the leaves possess immunoregulatory effects.11,12 A study showed that *Coleus amboinicus* Lour. extract inhibited the proinflammatory mediators in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and the edema-paw tissue of mice.13

Although *Coleus amboinicus* Lour. is known for its immunoregulatory effects, its potential in alleviating organ dysfunction has yet to be clearly studied. Therefore, we aim to determine the effects of *Coleus amboinicus* Lour. leaf extract on the blood glucose, aspartate aminotransferase (AST), alanine aminotransferase (ALT), urea, and creatinine levels, as well as the liver histopathology of septic rat model.

Materials and Methods

Preparation and Phytochemical Screening of the Extract

We obtained *Coleus amboinicus* Lour. from Tanah Karo Berastagi, Medan, North Sumatra, and identified the specimen in the pharmacy laboratory of Universitas Sumatera Utara (USU) faculty of pharmacy. We made the extract from dry powder via maceration with 70% ethanol, which was then soaked for 6 hours while stirred. After keeping the macerate in place for 18 hours, we performed a centrifugation to separate the powder from the solvent. This process was repeated at least once, with the solvent volume halved from the volume of the initial dilution. The macerate was later evaporated with a low-pressure vacuum or a rotary evaporator until it produced a thick extract.14 Lastly, we used standardized methods to examine the presence of alkaloid compounds, flavonoid, glycoside, saponin, tannin, and triterpenoid.13-16

To indicate the presence of alkaloid compounds, a total of 0.5 g of simplicia powder plus 1 mL of 2 N HCL and 9 mL of distilled water were blanched for two minutes, sprayed, and filtered. The filtrate was then processed with the following steps:14:

- Three drops of filtrate were added to two drops of Mayer reagent solution, creating a white, lumpy precipitate.
- Three drops of filtrate were added with two drops of Bouchardat’s reagent solution, creating a black-brown precipitate.
- Two drops of Dragendorff’s reagent solution were added to the filtrate. The presence of alkaloid compounds was indicated by a red or orange precipitate.

To indicate the presence of flavonoid, 1 mL of the solution was evaporated. The remainder was dissolved in 1 mL of 95% ethanol, plus 0.1 g of magnesium powder and ten drops of concentrated hydrochloric acid. A positive result for flavonoid was indicated by red-orange to purple-red color.14

Experimental Animal Model

This study is approved by Health Research Ethics Committee of USU (No. 711/2021). We used *Rattus norvegicus* rats for the study from the pharmacology laboratory of USU faculty of medicine, with the following inclusion criteria: male, healthy, aged 10-12 weeks, and weighing 200-300 grams. We excluded the rats that died during the study. Using the Federer formula with adjustments to the expectation of attrition, the sample was 28 rats in total. The rats were divided into 4 groups consisting of 7 rats in each group:

- Control: Healthy rats
- Group 1: Septic rats treated with antibiotics
• Group 2: Septic rats treated with antibiotics on the first three days and 250 mg/kg body weight of *Coleus amboinicus* Lour. leaf extract throughout the study
• Group 3: Septic rats treated with antibiotics on the first three days and 500 mg/kg body weight of *Coleus amboinicus* Lour. leaf extract throughout the study

The antibiotics used were 25 mg/kg body weight of intraperitoneal imipenem cilastatin. Each rat was placed in a cage with a 12 h light/dark cycle at a temperature of 27 ± 5°C. Before the experiment, the rats received the same standard laboratory treatment and feed for a week.

For the sepsis induction, we used fecal slurry at a dose of 1 g/kg body weight of the rats. The feces were suspended in saline to a concentration of 90 mg/ml and kept in place for 24 hours at 4°C. The suspension was injected into the right lower quadrant of the abdomen using a 21 G cannula. To ensure that the severity was the same across the septic rat groups, we performed measurements with Murine Sepsis Score (MSS), in which rats with MSS of less than 3 or more than 21 were excluded from the research.

At the end of the eighth day of observation, the rats were euthanized via cardiac puncture using a 27 G needle and 3 mL syringe. The rats were anesthetized with 10-12.5 mg/kg xylazine and 80-100 mg/kg ketamine during the euthanasia.

Serum Test
The blood collected during the cardiac puncture was centrifuged to separate the serum and stored at -80°C. Serum glucose (mg/dL), AST (U/L), ALT (U/L), urea (mg/dL), and creatinine (mg/dL) levels were measured in the laboratory using EDTA serum. The spectrophotometer wavelengths were as follows: 500 nm for glucose, 340 nm for AST and ALT, 578 nm for urea, and 510 nm for creatinine.

Histopathological Examination of the Liver
After the euthanasia, we collected the liver of the rats via post-mortem laparotomy. The organs were fixed using a neutral 10% formalin buffer solution for 24 hours and then cut and dehydrated with 70%, 80%, and 90% alcohol for 2 hours. We later dehydrated the tissues again with absolute alcohol I and II for 2 hours. Next, we clarified the tissues with xylol for 3 minutes. They were then immersed in paraffin and cut with a microtome at 6-8 mm thickness. Hematoxylin-Eosin (H&E) staining was performed on the slides for histopathological examination.

A pathologist who is blind to the experimental conditions examined sections of tissue. Based on a past study, we used the Scheuer system to score the histopathological damage of the liver.

Statistical Analysis
The statistical analysis was performed using Statistical Package for the Social Studies (SPSS). We analyzed the differences in creatinine and AST levels in all groups with ANOVA test. Meanwhile, the serum glucose, urea, and ALT levels, as well as the histopathological scores in all groups, were analyzed with Kruskall-Wallis test. p < 0.05 indicates significance.
Kupffer cell activation. These liver macrophages release chemokines and inflammatory cytokines, causing the recruitment of various immune cells to the damaged site and the amplification of inflammation.²²

In line with this, we found an increase in serum glucose levels of group 1 compared to the control group, which is shown in Fig. 1. Meanwhile, the serum glucose levels of group 2 and 3 showed a decrease compared to group 1, although not significant, with p > 0.05 (p = 0.393). This suggests that the extract reduced the inflammatory response and thus decreased the stress response. Moreover, flavonoids have been reported to stimulate insulin production.²³

Figure 1. Serum glucose levels of all rat groups

We also examined the AST and ALT levels in the rats’ serum to assess the effect of Coleus amboinicus Lour. leaf extract on liver damage. Due to their abundance in hepatocytes, AST and ALT are associated with hepatocellular integrity. Both enzymes are released from the hepatocytes to the bloodstream during hepatocellular injury.²⁴ As such, increased serum AST and ALT levels indicate liver injury.²⁵ Liver injury has also been reported to correlate with elevated inflammatory markers and cytokine levels.²⁶

This is in line with our study, in which group 1 showed an increase in serum AST and ALT levels compared to the control group, which is shown in Fig. 2. Group 2 and group 3 showed lower levels of serum AST and ALT compared to group 1, though the decrease was not significant, with p > 0.05 (p = 0.064; p = 0.961). As inflammation causes liver injury in sepsis, this suggests that the extract alleviates the injury directly by regulating inflammation and indirectly by reducing serum glucose levels.²⁷ This is supported by our histopathological findings, in which the liver tissues of the rat groups treated with Coleus amboinicus Lour. leaf extract showed a decrease in the number of inflammatory cells, as shown in Fig. 3. The mean of the liver histopathological scores was significantly decreased in group 2 and 3 compared to group 1, as shown in Fig. 4, with p < 0.05 (p = 0.003).
Figure 4. The liver histopathological examination of all rat groups (H&E-stained), (a) in control, (b) in group 1, (c) in group 2, and (d) in group 3. Yellow arrows indicate lymphocytic inflammatory cells. Blue circles indicate necrotic cells. Black circles indicate deformed cells and inflammatory cell clusters.

Lastly, we examined the urea and creatinine levels in the rats’ serum to assess the effect of Coleus amboinicus Lour. leaf extract on kidney damage. Kidney injury occurs in sepsis due to the inflammatory response to infection, which leads to pyroptosis. The inflammation also triggers an adaptive response of the tubular epithelial cells, which consists of cell function downregulation to decrease energy expenditure and ensure cell survival. However, this leads to reduced kidney function and increased serum urea and creatinine levels. In line with this, we found an increase in serum urea and creatinine levels of group 1 compared to the control group. Meanwhile, the serum urea and creatinine levels of group 2 and 3 showed a decrease compared to group 1 as shown in Fig. 5, although not significant, with p > 0.05 (p = 0.288; p = 0.119). The attenuation of the inflammatory response by Coleus amboinicus Lour. leaf extract inhibits the adaptive response of the tubular epithelial cells, resulting in the preservation of kidney function and a decrease in the serum urea and creatinine levels of the rats.

Interestingly, the rat group given 250 mg/kg body weight of Coleus amboinicus Lour. leaf extract showed a more consistent improvement compared to the rat group given 500 mg/kg body weight of Coleus amboinicus Lour. leaf extract. This is similar to a past study that evaluated the antiinflammatory effect of Coleus amboinicus Lour. leaf extract in carrageenan-induced rat paw edema. The rat group given 250 mg/kg body weight of Coleus amboinicus Lour. leaf extract showed a higher percentage of reduction in the edema compared to the rat group given 350 mg/kg body weight of Coleus amboinicus Lour. leaf extract. A possible mechanism is the excessive immunosuppression in higher doses, which leads to the release of damage-associated...
molecular patterns (DAMPs) such as histones and neutrophil extracellular traps (NETs). These DAMPs impair microcirculation and cause coagulation, leading to disseminated intravascular coagulation (DIC) and further organ injury. The further organ injury will, in turn, release more DAMPs, resulting in a vicious cycle of immunosuppression via immune senescence and organ injury.32, 33

Conclusion

Coleus amboinicus Lour. leaf extract administration has no significant effect on the biochemical markers but improves the liver histopathology scores in septic rat model. However, we recommend a lower dose as it shows more consistency in the improvements. It is also worth noting that only the liver histopathological scores showed a significant reduction upon administration of the leaf extract, suggesting that histopathological improvements occur faster than biomarker improvements.

Acknowledgment

This research was funded by Universitas Sumatera Utara, Indonesia, via 2021 “Talenta” Research (Grant Number 6789/UN5.1/R/PPM/2021). The authors would like to express gratitude to the Chancellor of Universitas Sumatera Utara, the head of the integrated laboratory, pharmacology laboratory and biochemistry laboratory in the Universitas Sumatera Utara Faculty of Medicine.

Authors’ Declaration

- Conflicts of Interest: None.
- We hereby confirm that all the Figures and Tables in the manuscript are ours. Furthermore, any Figures and images, that are not ours, have been included with the necessary permission for re-publication, which is attached to the manuscript.
- The authors have signed an animal welfare statement.
- Ethical Clearance: The project was approved by the local ethical committee at Universitas Sumatera Utara.
- No human studies are present in the manuscript.
- No potentially identified images or data are present in the manuscript.

Authors’ Contribution Statement

M.I.S. designed the study. R.L.K. and Y.S.P. performed the experiments and gathered the data. S.S. analyzed the data. M.I.S. wrote the paper with input from all authors. All authors have read and approved the final version of the manuscript.

References

Aug: 54(2): 168-182. [https://doi.org/10.1097/SHK.0000000000001485]

No abstract available.