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ABSTRACT

The rapid spread of the COVID-19 pandemic has strained global healthcare systems, necessitating efficient diagnostic
methods. While Polymerase Chain Reaction (PCR) and antigen tests are common, they have limitations in speed and
precision. Enhancing the accuracy of imaging techniques, especially Chest X-rays (CXR) and Computerized Tomography
(CT) scans, is crucial for detecting COVID-19-related lung abnormalities. CXR, being cost-effective and accessible, is
preferred over CT scans, but accurate diagnosis often requires technological support. To address this, an extensive dataset
of CXR images categorized into five classes is available on Kaggle. Processing such data involves steps like grayscale
conversion, image intensity adjustment, resizing, and feature extraction using Principal Component Analysis (PCA).
Machine Learning (ML) techniques, including Decision Tree (DT), Random Forest (RF), Stochastic Gradient Descent
(SGD), Logistic Regression (LR), Gaussian Naive Bayes (GNB), and K-Nearest Neighbors (KNN), are employed for image
classification. DT shows the highest accuracy at 88%, outperforming other models like GNB (77%), KNN (71%), SGD
(70%), LR (74%), and RF (45%). It consistently excels across assessment metrics such as F1-score, sensitivity, and
precision, with an 88% best-weighted average. However, selecting the optimal ML model depends on factors like dataset
characteristics and implementation specifics. Thus, careful consideration of these factors is crucial when choosing an
ML model for COVID-19 diagnosis via CXR image classification.

Keywords: Chest X-ray (CXR), COVID-19, Decision tree, Gaussian Naïve, Stochastic gradient descent, Bayes, Machine
learning

Introduction

Artificial Intelligence (AI) has made significant
advancements in medical diagnosis and the devel-
opment of new medicines.1,2 AI is projected to
significantly impact radiology, providing radiologists
with tools for more exact diagnoses and prognoses,
ultimately leading to more efficient treatments. Com-
puters, equipped to analyze vast expanses of patient

data, are on the verge of replacing radiologists in
numerous clinical environments, bringing forth a new
era of radiological practice driven by big data and
AI. AI has already demonstrated successful applica-
tions in treating skin cancer and managing chronic
disorders.3 In the fight against the novel coronavirus,
scientists anticipate AI playing a vital role in find-
ing a cure and alleviating the fear associated with
the pandemic.4 The ML offers a robust method for
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analyzing data in many formats; efficient use necessi-
tates meticulous feature organization. The researcher
used this strategy in one study on the online pur-
chases and returns dataset. With a total of 5,659,676
transactions and 15,555 facets, the dataset in issue
was quite large.5

The COVID-19 pandemic has put tremendous de-
mand on healthcare systems, forcing them to adapt
to new techniques. This necessitates the utiliza-
tion of cutting-edge technologies such as AI to
develop intelligent and self-sufficient healthcare so-
lutions.6,7 COVID-19 stands out among viruses due
to its rapid replication and transmission, resulting
in a global pandemic within a remarkably short pe-
riod of time.8 Extensive research and analysis are
ongoing in the medical and healthcare sectors to
better understand this rapidly evolving health crisis
and develop effective responses.9 Accurately sim-
ulating the spread of COVID-19 remains a critical
objective. The gold standard for diagnosis is the de-
tection of viral RNA in sputum by real-time reverse
transcription-polymerase chain reaction (RT-PCR) on
nasopharyngeal swabs.10,11 However, these tests can
take up to 6 hours to yield results and rely on human
intervention while exhibiting a low positive rate in
the early stages of illness. Thus, there is a pressing
need for rapid and accurate diagnostic methods to
bring the pandemic under control as quickly as pos-
sible, particularly in the long term when lockdowns
are lifted, and widespread testing becomes essential
to prevent a resurgence of the virus.12,13 The pre-
vention of this disease has been approached from
various angles. To reduce employee dependency,
maintain COVID-19 safety, and cut identity verifi-
cation expenses, the study developed a COVID-19
Vision system that uses Haar cascades for a real-time
face mask detector.14

In many countries, COVID-19 testing is primar-
ily available to individuals with disease symptoms.
However, it is significant to note that numerous symp-
tomatic patients exhibit more than one sign, making it
challenging for national healthcare systems and staff
to identify and track potential cases. This burden is
particularly overwhelming, even in highly developed
nations. To address this crisis, AI algorithms play a
crucial role in various aspects of the global health
emergency response. AI algorithms are instrumental
in the development of drugs and vaccines, as well
as in monitoring people’s mobility patterns to ensure
compliance with social distancing guidelines. These
algorithms also assist medical professionals in quickly
diagnosing COVID-19 by evaluating CT scans and
X-rays of lung conditions, enabling efficient patient
tracing.15,16

ML algorithms encounter several obstacles while
attempting to diagnose COVID-19 using CXR images.
These include issues with dataset size, image quality,
data augmentation, feature extraction, model selec-
tion, and performance evaluation.17 To overcome
these obstacles, it is necessary to enhance the perfor-
mance of ML algorithms by meticulous preprocessing,
feature extraction, model selection, and evaluation
procedures. Size, balance or imbalance, and image
quality are dataset-related variables that affect how
quickly and well ML classification works with CXR
images.18

The COVID-19 pandemic has urgently needed ef-
ficient and accurate disease diagnosis. CXR imaging
has emerged as a valuable tool in identifying COVID-
19 cases due to its accessibility and cost-effectiveness.
To improve the diagnostic procedure, ML applica-
tions were used to analyze CXR images and aid in
diagnosis and classifying COVID-19 cases. This in-
troduction explores the use of ML in analyzing CXR
images for COVID-19 diagnosis, highlighting its po-
tential to improve accuracy, speed up the diagnostic
process, and assist healthcare professionals in effec-
tively managing the pandemic. This study examined
14 research articles on COVID-19 and ML, discover-
ing that ML plays a significant function in COVID-19
research, prediction, and discrimination, with super-
vised learning achieving a testing accuracy of 92.9%,
implying its potential inclusion in healthcare pro-
grams for assessing and triaging COVID-19 cases.
In contrast, recurrent supervised learning may offer
even greater accuracy in the future.19 ML approaches
have been extensively employed in the medical arena,
particularly in the context of COVID-19, utilizing
various imaging systems such as CXR, with appli-
cations ranging from diagnosis to forecasting and
medication development; however, challenges and
limitations still exist, necessitating further research
to address issues related to safety and other factors,
while Keras remains the most commonly used li-
brary in these studies.20 The critical need for timely
and reliable detection of COVID-19 patients was
focused on. The study emphasized the advantages
of using whole blood count tests for early detec-
tion, used ML algorithms for prediction and assessed
performance using accuracy, recall, precision, and F-
measure metrics.21,22 ML is a scientific approach that
enables computer systems to perform specific tasks
without explicit programming, utilizing algorithms
and statistical models. ML algorithms are widely
applied in various applications, offering the advan-
tage of independent decision-making once trained
with data.23 The study used ML and Deep Learning
(DL) algorithms in a multi-test retrospective analytic
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approach to detect and assess COVID-19 its progres-
sion using CXR features, resulting in a satisfactory
“corona score” that demonstrated the high accuracy
of advanced AI-based image analysis in diagnosing,
quantifying, and monitoring COVID-19.24

This article compares ML methods for COVID-19
disease categorization to improve accuracy and im-
plementation time. The main contributions of this
paper are summarized as follows:

• Preprocessing: Images are converted to grayscale,
density adjusted using Histogram Equalisation
and resized for speeding and analysis.

• PCA Feature Extraction: Extracts the most infor-
mative features from scaled images.

• Dimensionality Reduction: Images are reduced
from two dimensions to one dimension while
keeping PCA information to speed up training and
reduce hardware requirements.

• Training and Testing ML Models: Prepared CXR
images of train and test models.

• Evaluation of Effective ML Classifiers: The study
evaluates ML classifiers that can identify COVID-
19 cases from five categories using CXR images.

This article is organized as follows: Section two
presents related works on COVID-19 categorization
from CXR images using ML approaches. Section three
is separated into three subsections; each discusses the
dataset description, preprocessing techniques, and
Feature Extraction Using Principal Component Analy-
sis (PCA). Section 4 covers the ML algorithms used in
the study. The fifth section is divided into “Results
and Performance of ML Algorithms” and “Evalua-
tion Performance Comparison of ML Algorithms”.
In the final section, discuss the research’s strengths
and weaknesses, its practical and theoretical conse-
quences, and plans for the future.

Related works

The capability of ML to manage complicated and
enormous datasets is demonstrated here. The global
COVID-19 pandemic has highlighted the urgent need
for effective detection methods. Several studies have
explored the effectiveness of ML methods in achiev-
ing high accuracy for COVID-19 diagnosis using CXR
images. Recent research has investigated advanced
ML approaches, such as KNN, to detect COVID-19
with up to 88% classification rates.25 To identify
COVID-19 cases from CXR images, a comparison of
various ML methods, including Convolutional Neural
Networks (CNNs), Support Vector Machines (SVMs),
and RFs, was done. The results showed that CNNs

outperformed the other algorithms, with the most
fantastic accuracy of 95%.26 Another study used CXR
pictures to compare ML methods such as SVM, RF,
and gradient boosting for COVID-19 identification.
RF scored the highest accuracy of 93%, showing their
potential for reliable diagnosis.27

CXR radiography can be used to triage non-COVID-
19 lung illnesses.28 However, these investigations
frequently require assistance with tiny datasets and
the resulting limitations in accuracy. Attempts have
been made to construct efficient ML classifiers, with
training and testing accuracies in 4-class classification
reaching 87%.29 This survey presents a comprehen-
sive assessment of advanced ML approaches that aid
in diagnosing COVID-19 to improve public health.30

Various datasets containing computed tomography
(CXR) scans of healthy subjects, patients with pneu-
monia, and COVID-19 cases have been used, with
mixed results. Two notable approaches were COVID-
Net (83% success rate) and a “Naive Bayes” method
(87% success rate).31 KNN has the highest accuracy
and weighted average for precision, sensitivity, and
F1-score among the ML models tested.32 The study
aimed to develop a Lasso-logistic regression model
predicting COVID-19 severity (severe, moderate, and
mild), demonstrating 85.9% accuracy and reducing
deaths through early detection.33

Several other diseases, including Alzheimer’s, glau-
coma, cancer, and others, have been successfully
detected in real-world clinical settings using the same
ML methodology that has proven so successful in
COVID-19 detection over the last three years.34 On
the other hand, several major obstacles have neces-
sitated the development of more durable devices to
train massive datasets effectively using DL algorithms
and dealing with the low quality of medical images.35

Choosing the suitable ML model or DL architecture
requires much disease-specific practical experience.

There are some serious limitations to the re-
search that were cited. Some examples are issues
like employing ML for CXR image classification with-
out proper CXR image preprocessing methods and
imbalanced classes in their datasets. Inconsistent im-
plementation of key techniques led to issues with
intensity equalisation, noise removal, resizing, and
feature extraction using methods like principal com-
ponent analysis (PCA). Metrics for evaluation, such as
F1-score, recall, accuracy, and precision, require im-
provement. Furthermore, training ML models usually
takes a long period.

These studies demonstrate the significance of ML
approaches in achieving high accuracy for COVID-
19 diagnosis using CXR images. Using the power of
these algorithms, accurate and efficient identification
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Fig. 1. The methodology diagram illustrates using ML algorithms to classify CXR images.

of COVID-19 instances can be achieved, allowing for
timely interventions and reducing disease spread.

Methodology

The COVID-19 epidemic has generated an urgent
need to tackle a severe hazard to human health.
The correct interpretation and classification of CXR
images are critical in diagnosing COVID-19. ML
technologies improve imaging tools’ capabilities, sup-
porting healthcare professionals’ curative efforts. A
large number of researchers have classified COVID-
19. It takes a fresh approach to ML algorithms to
obtain optimal accuracy while requiring little exe-
cution time and storage. This section describes the
methods used in this study in depth, beginning with
the dataset description, CXR imagines preprocessing
and feature extraction using PCA, and ending with a
description of the ML algorithms used. The methodol-
ogy provides an in-depth look at the research process.
The classification methodology consists of several
steps. Initially, preprocessing techniques are applied
to convert the image into a grayscale format and
adjust its density. Subsequently, the image is resized,
and feature extraction is performed using PCA to
extract the most informative features. The image is
then transformed from two dimensions to one di-
mension to enhance training speed and minimize

hardware requirements. Finally, the prepared images
train and test ML models from X-ray images to classify
COVID-19. Fig. 1 visually represents the implementa-
tion process and taxonomy utilized in our work for
dataset preparation before using ML models to clas-
sify COVID-19 in CXR images. The remainder of this
job is well-organized. Before using ML algorithms,
the dataset goes through four preprocessing stages
to decrease storage size, with increased execution
speed and accuracy of classification. At the outset, the
dataset is transformed into grayscale, transitioning all
images from three to one channel. The next step in
improving the quality of CXR images is to apply His-
togram Equalisation to adjust the image intensities.
All pictures are shrunk from their original (227 ×
227) dimensions to a more manageable (20 × 20)
to speed up the execution. The final stage involves
utilizing PCA to extract the most relevant character-
istics for optimal categorization. After all processes
have been performed, the data is split into training
(70%) and testing (30%) sets, and several algorithms
for ML, such as DT, RF, SGD, LR, GNB, and KNN, are
used to classify the data.

Description of the dataset

This study’s dataset consisted of five classes derived
from three primary datasets. The COVID-19 data
were obtained from Cohen et al.’s36 comprehensive
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Fig. 2. A selection of CXR images from each dataset class.

X-ray and CT images that included various lung dis-
orders such as COVID-19, SARS, and MEARS. This
dataset is regularly updated and comprises 752 X-
ray images until June 15, 2020, with the majority
(435) depicting cases of COVID-19. Lateral X-rays
and CT scans were excluded from this investigation,
and incomplete metadata resulted in the omission
of gender information for forty-three photographs.
On average, the COVID-19 patients in the dataset
were approximately fifty-four years old, with ap-
proximately two hundred fifty-six males and one
hundred thirty-six females. To create balanced sets
between pneumonia-positive radiographs (including
normal, bacterial, and viral cases) and normal im-
ages, the second source utilized a dataset consisting
of around 5,863 pictures.37 Another dataset from
the US National Library of Medicine focused on tu-
berculosis (TB) provided two sets of CXR. This TB
dataset supports research on computer-aided diagno-
sis (CAD) for respiratory diseases, including TB.36,38

The TB dataset contained a total of 394 images, with
336 originating from China and the remaining 58
sourced from Montgomery County. However, due to
the slightly fewer TB X-ray images compared to other
classes, the detection performance may be affected
by class imbalance.39 Augmentation techniques were
used to resize a random sample of 40 X-ray im-
ages to solve this issue. The dataset comprised five
classes of CXR images, each with a different num-
ber of cases. With a relatively balanced CXR image
dataset, this work will classify COVID-19 using mul-
tiple ML models. Using a dataset of CXR images that
is almost balanced has a positive effect on the ac-
curacy and effectiveness of COVID-19 classification
using different ML models, which is a substantial
benefit.

• Class 0: Represented 186 verified COVID-19 cases.
• Class 1: Represented 186 Normal cases.
• Class 2: Represented 189 cases of Bacterial

Pneumonia.
• Class 3: Represented 173 cases of Viral

Pneumonia.
• Class 4: Represented 187 confirmed Tuberculosis

cases.

All CXR images maintain a uniform seam size of
(227 × 227) for the five classes, ensuring consistency
throughout the dataset. With a relatively balanced
CXR image dataset, this study will classify COVID-
19 using multiple ML models. Using a dataset of
CXR images that is almost balanced has a positive
effect on the accuracy and effectiveness of COVID-19
classification using different ML models, which is a
substantial benefit. Fig. 2 shows a sample CXR image
from each dataset class: (A) COVID-19, (B) Normal,
(C) Pneumonia-Bacterial, (D) Pneumonia-Viral, and
(E) Tuberculosis CXR image.

Preprocessing stage

In ML approaches, one common strategy is to re-
duce background noise and highlight relevant regions
in an image for identification tasks or during the
learning phase. This preprocessing method aims to
eliminate extraneous data and noisy values. For the
model to converge, pixel intensity normalization is
performed within the range of [0, 1]. The resized re-
sponse images are designed to work with the system’s
architecture and support the ML models. Efficient
nets, with low memory and latency costs, are uti-
lized to take advantage of higher-quality response
images. This adjustment in response determination
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Fig. 3. CXR image following histogram averaging.

can impact the precision of the model. The fol-
lowing steps outline the preprocessing phase of the
procedure:

1. Convert the color image (RGB) to a grayscale im-
age. This is achieved using the following Eq. (1):

Grayscale
(
i, j
)
= (0.2989× r)
+
(
0.5878× g

)
+
(
0.1140× b

) (1)

Converting the image to grayscale reduces the num-
ber of channels from three to one, allowing faster
processing than color images.

2. Enhance the image’s contrast by applying his-
togram equalization, as shown in Eq. (2):

Hist (v) = cut
(

(cd fv − cd fmin
(m× n)− 1

)
× (L− 1) (2)

The total number of pixels in the image, as m and
n, determines the cumulative distribution function
(cdf ). L represents the grey level range, which is 256
levels. Fig. 3 depicts (a) the original chest radiograph
image, (b) the original image’s histogram, (c) the final
improved chest radiograph image, and (d) the final
image’s histogram.40

3. Reduce or reshape the size of the image gen-
erated from the previous stages using the

following Eq. (3):

Jreshape(x,y) =
x∑
h=1

y∑
w=1

j_ Gray
(
x, y

)
(3)

The original image’s width is denoted by w = 227,
the height of the original image is denoted by h =
227, and the width and height of the image after
resizing are x = 20 and y = 20, respectively, at the
same in.41,42 These preprocessing steps help prepare
the image data for further analysis and ML tasks,
allowing for improved performance and more effi-
cient processing. Fig. 4 illustrates the various stages
of image processing, explicitly focusing on grey-level
conversion, histogram analysis, and image resizing to
a dimension of (20 × 20) pixels.

Several vital benefits are available during the
preprocessing phase of the process. The first step
in reducing computing complexity, simplifying data
representation, and enhancing image structure and
brightness information while eliminating color fluctu-
ations is to convert a color image (RGB) to a grayscale
image. Second, histogram equalization makes images
seem better by increasing contrast, making details
more visible in low-contrast images, and making the
dynamic range of pixel intensities more uniform. Fi-
nally, there are some advantages to reducing the size
of images from 227× 277 to 20× 20, including fewer
computing demands, less storage space needed, and
the possibility of image processing activities being ac-
celerated. In some cases, when the input dimensions
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Fig. 4. A sample of CXR images is undergoing three preprocessing stages.

of the analysis or model are smaller than the orig-
inal image dimensions, this resizing becomes very
useful.

Feature extraction

ML models depend on precise feature extraction,
which poses significant challenges in accurately diag-
nosing COVID-19 from X-ray images. If not carefully
chosen, inadequate features can result in a subopti-
mal representation of our data, consequently leading
to a less effective classification. The PCA method is
selected for feature extraction because of its many ad-
vantages. PCA is an invaluable tool for improving the
efficiency of ML models used for COVID-19 diagnosis
from CXR images.15 PCA extracts a new collection
of principal components from the initial features by
lowering the dataset’s dimensionality. The amount
of information to preserve is significantly affected
by the selection of principal components, and the
first principal component captures the most variance
compared to others. Choosing the correct number of
significant components allows for the optimal reten-
tion of relevant information. ML models trained with
CXR images have significantly improved their ability
to diagnose COVID-19.

PCA is a commonly used statistical technique for ex-
tracting features and image representation. PCA aims

to minimize the dimensionality of high-dimensional
data while maintaining as much original informa-
tion as a CXR image. After preprocessing a set of
images, PCA is then used to process another set of
images so that its feature extraction knowledge can
be used.43 PCA is a feature extraction and dimension-
ality reduction technique by utilizing an orthogonal
transformation to convert potentially correlated ob-
servations into linearly uncorrelated variables. It is
a practical method for feature extraction in pattern
recognition.44 Fig. 5 shows the case of the PCA ap-
proaches. The main objective of PC is to represent
patterns with a reduced number of features, reducing
dimensionality while retaining crucial discriminative
information. PCA is a traditional pattern recognition
approach for feature extraction and data representa-
tion. Its purpose is to capture the essence of patterns
with fewer features and reduce the dimensionality
of the feature space while retaining critical discrimi-
native information. One notable application of PCA
is Eigenface, which utilizes PCA techniques to ex-
tract characteristic features from facial images. It
represents a given face as a linear combination of
“eigenfaces” obtained through feature extraction.45

The PCA is a linear modification that can decrease
the number of dimensions in a dataset. Maximizing
the data’s variance helps achieve this goal, produc-
ing a vector of orthogonal basis groups with no
correlations.46,47
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Fig. 5. A comprehensive primer on principal component analysis.

Taking into account d data points, where n is the
number of dimensions in the dataset, and the fact that
supplied by z1, z2, zk € Rn, PCA is carried with using
the following techniques:

• The m-dimension mean vector MV may be com-
puted as Eq. (4): To get the m-dimensional mean
vector MV, the average all data points in the
dataset, z_1, z_2, . . . , z_k. The algorithm deter-
mines the mean by adding all the data points and
dividing by the total number of data points (d).

MV =
1
d

d∑
i=1

zi (4)

• The covariance matrix CM for the observations is
Eq. (5): The dataset’s relationships are represented
in the covariance matrix CM. For its calculation, to
take the dot product of the vectors that arise from
subtracting the mean vector (MV) from each data
point (z_i). Can may find their covariance matrix
for each set of data points by adding up their outer
products and dividing by (d).

CM =
1
d

d∑
i=1

(zi − MV ) xi − MV )d (5)

• The eigenvalues and eigenvectors are calculated
based on CM.

Covariance matrices (CMs) have their eigenvalues
and eigenvectors determined. Each principal com-
ponent’s eigenvalue and eigenvector indicate the
variation it explains and the direction in which each
principal component is located, respectively.

• This is performed through the PCA method, which
involves linear transformations to reduce data di-
mensionality. Eq. (6): Everyone uses the PCA tech-
nique to reduce dimensionality. By adding to-
gether the original data points (z_1, z_2, . . . , z_d)
and multiplying them with the associated coeffi-
cients (a_d1, a_d2, . . . , a_dd), the converted data
point (y_d) in the reduced-dimensional space can

be obtained.

yd = ad1z1 + ad2z2 + · · · + addzd (6)

Machine learning algorithms

CXR is a type of medical imaging that is crucial
in the global fight against COVID-19. Recent ad-
vancements in ML technologies have significantly
enhanced CXR imaging capabilities and have proven
valuable tools for medical professionals. This study
used ML models to identify COVID-19 instances,
Pneumonia-Bacterial, Pneumonia-Viral, and normal
occurrences in CXR images. The preprocessing steps
include adjusting grey levels, histogram equalization,
and resizing, followed by feature extraction on the
dataset using PCA. Upon completion of the prepro-
cessing steps and the application of PCA for feature
extraction, resulting in 400 features for each CXR
image, the dataset is subsequently separated into 70%
for training and 30% for testing purposes. They uti-
lized several ML algorithms, including DT, RF, SGD,
LR, GNB, and KNN, to evaluate their performance and
effectiveness within different prediction models. The
results of these algorithms were computed and evalu-
ated, and to provide further insight, a comparison was
made with recently published COVID-19 detection
models. The application of these algorithms in our
experiments is depicted in Fig. 6.

Decision tree DT

DT classifiers are widely recognized as one of the
prominent approaches for data classification, serv-
ing as effective representation models.48 The DT
comprises core nodes that function as data pattern
tests and leaf nodes that serve as data pattern cate-
gories. These tests are run across the tree to get the
best output for a given input pattern. DT algorithms
find applications in various domains.49 This super-
vised ML algorithm is capable of solving classification
and regression problems. It is known for its simplicity
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Fig. 6. The flowchart of the ML algorithms to classify CXR images.

and effectiveness in classification tasks. Mathemati-
cally, the DT algorithm involves understanding the
concept of entropy (H) before delving into the calcu-
lation of Information Gain (IG), as depicted in Eq. (7):

Entropy (H) =
c∑
i=1

− pi ∗ log2 (7)

â H represents entropy.
â c is the number of classes or categories.

â pi is the probability of occurrence of the i-th
class. pi)

â log2 is the base-2 logarith2.

The entropy and Information Gain (IG) formulas
and their parameter values. Entropy is essential in the
decision-making process of a DT since it determines
data segmentation and boundary construction. It is
used to assess the impureness or randomness of a
dataset. Conversely, Information Gain (IG) is used to
determine the best feature for splitting at each stage
of tree development. The capacity of DT classifiers
to effectively handle randomness in performance out-
comes is well known. The formula for IG is known as
Eq. (8).

IG (Y/X ) = H (Y )− H (Y/X ) (8)

â IG (Y | X) represents the IG when you split the
dataset Y based on the attribute X.

â H (Y) is the entropy of the original dataset.
â H (Y | X) is the conditional entropy of Y given
X, which is the entropy of Y after the dataset has
been split based on the attribute X.

Random forest (RF)

The most common application of RF as a supervised
ML approach enables the solution of classification and
regression problems.50 RF constructs decision trees
from diverse samples and employs majority voting for
classification or averaging for regression. It is widely
recognized as an efficient classification method and
has been successfully applied for COVID-19 predic-
tion in numerous studies.8 This study employs an ML
model, specifically RF, to identify critical features for
distinguishing COVID-19 cases from non-COVID-19
cases. When performing RF on classification data,
it is important to consider the Gini index, which
determines the connections between nodes in a DT
branch. The Gini index, as represented by Eq. (9),
computes the Gini impurity of each branch based on
class distribution and probabilities, thereby aiding in
determining the more likely branch outcome.

Gini =
c∑
i=1

−(pi)2 (9)

c is class count.
pi is the probability o f class i in the dataset .
Calculates the Gini impurity for each branch based

on the class and its probability, helping determine the
likelihood of occurrence for each branch.



696 BAGHDAD SCIENCE JOURNAL 2025;22(2):687–705

Stochastic gradient descent (SGD)

SGD is a common algorithm in many ML ap-
proaches, particularly as the foundation for neural
networks.51 SGD is an iterative procedure that begins
at an arbitrary idea on a function and steadily de-
scends its slope until it reaches the minimum point. In
the case of SGD, the parameters are given a random
beginning value, and partial derivatives concerning
each feature are computed.51 SGD excels in proper
convex loss functions using linear classifiers and re-
gressors.52 As a result, ML classifiers, notably SGD
adaptive classifiers, are used to examine data with
appropriate tools. Our work used PCA to extract key
features and achieve maximum accuracy while utiliz-
ing SGD to diagnose COVID-19. The SGD formula is
as follows:

two
(
b
)
=

1
2n

n∑
i=1

(
f (xi)−Yi

)2 (10)

The learning rate (η) is typically chosen as 0.1 or
0.01. The new parameters are updated using the fol-
lowing Eq. (11):

New params = Old params− η ∗ Derivat ive J
(
b
)

(11)

Logistic regression (LR)

LR is still one of the most popular ML techniques,
especially for binary classification jobs. LR calculates
the likelihood of a specific result based on the in-
put factors. The cost function determines the optimal
values for 0 and 1 to construct the best-fit line for
the data points provided.53 The cost function eval-
uates the model’s performance in linear regression
by optimizing the regression coefficients or weights.
The Mean Squared Error (MSE) cost function com-
putes the usual squared error between the expected
and actual data values.54 It may be deduced that
ML classification algorithm models, such as LR, can
be used to predict COVID-19 patients.55 LR uses the
sigmoid function to convert predicted values into
probabilities. The sigmoid function transforms any
actual value into a rate between “0 and 1”. The sig-
moid function formula is as follows 12:

f (x) =
1

1+ e−(x) (12)

â f (x) is the output value between 0 and 1.
â e is the base of the natural logarithm (approxi-

mately equal to 2.71828).
â x is the input value.

The cost function is MSE, which measures the av-
erage squared difference between anticipated and
actual values. The equation represents the Mean
Squared Error (MSE) formula 13:

MSE =
1
n

n∑
i=1

(xi − yi )2 (13)

â n is the number of data points.
â xi represents the actual (observed) value for the

i-th data point.
â yi represents the predicted value for the i-th data

point.

K-Nearest neighbors (KNN)

The current slow learning strategy is KNN, based
on the traditional KNN algorithm.56 The KNN classi-
fier, as previously stated, is a frequent version of the
closest neighbor technique that involves categorizing
an unknown sample based on the votes of k nearest
neighbors rather than simply one nearest neighbor.
KNN is a supervised ML algorithm.55 That describes
in full the stages involved in the KNN algorithm. To
forecast COVID-19 patients, can also use the KNN
method, one of the ML classification models. The KNN
method employs the following Euclidean distance
formula:

the d (p, q) = (q, p) =

√√√√ n∑
i=1

(qi − pi )2 (14)

Gaussian naive bayes (GNB)

GNB is one of the most straightforward categoriza-
tion algorithms,57 and Naive Bayes (NB) classifiers
rely on Bayes’ Theorem. These classifiers adopt a
strong assumption of feature independence, treating
the worth of one feature as distinct from the worth of
any other feature. NB classifiers are effectively taught
in a supervised learning framework and are simple
to create and deploy, making them useful in various
real-world scenarios. When working with continu-
ous data, it is expected to assume that the values
for each class are regularly distributed (Gaussian).58

To classify CXR images, this study employs the GNB
algorithm specifically created for COVID-19 identifi-
cation. GNB models make use of continuous values
with Gaussian (normal) distributions. When working
with continuous data, assuming that the values asso-
ciated with each class follow a normal distribution
is expected. The feature likelihood estimation can be
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represented as follows:

p(xi | y) =
1√

2πσ 2
y

exp

(
−

(
xi − µy

)2
2σ 2

y

)
(15)

â p(xi | y) This represents the likelihood of the vari-
able xi given y, under certain conditions.

â 1√
2πσ 2

y
Normalisation ensures the entire proba-

bility integrates to 1. It is the reciprocal of the
standard deviation times the square root of 2π .

â exp(− (xi −µy )2

2σ 2
y

) The exponential term is the Gaus-
sian distribution likelihood term. It shows the
probability of a given xi given y.

Evaluations metrics

A confusion matrix is a critical tool for assessing
the performance of ML algorithms, particularly in
classification tasks. It presents a complete overview
of the algorithm’s predictions about the actual labels
of the data. This matrix is made up of four main
components: true positives (TP), true negatives (TN),
false positives (FP), and false negatives (FN), which
enable the computation of critical metrics such as
accuracy, precision, recall, and F1 score.59 The con-
fusion matrix aids in understanding the strengths and
weaknesses of a model, enabling researchers to make
informed decisions for improving its performance. At
this stage, the focus is on determining the accuracy
of the classifier. Evaluating the classifier’s effective-
ness involves assessing how well the anticipated class
labels align with the observed ones.

• Accuracy: Also known as model viability, it in-
dicates the suits of correct forecasts to total
predictions:

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(16)

• Precision: It measures how accurately the classi-
fier assigns documents to a specific category. Class
precision is quantified as:

Precision =
TP

(TP + FP)
(17)

• Recall: It indicates the classifier’s ability to iden-
tify documents belonging to a particular class
correctly. Class recall can be calculated as:

Recall =
TP

(TP + FN)
(18)

• F1-Score: This metric evaluates the balance be-
tween precision and recall. A high F1 score
indicates satisfactory overall performance of the
system. It is computed as:

F1-Score = 2 ∗
(
Precision ∗ Recall
Precision + Recall

)
(19)

Results and discussion

Results and performance of ML algorithms

After completing the preprocessing stages and us-
ing PCA for feature extraction, resulting in 400
features per CXR image, 70% of the dataset was set
aside for training and 30% for testing. Following that,
multiple ML techniques, such as DT, RF, SGD, LR,
GNB, and KNN, were used to diagnose COVID-19 us-
ing the CXR images. The outcomes of these algorithms
were assessed, and their performance was evaluated
using appropriate metrics such as accuracy, precision,
recall, and F1-score. In the following, the present the
results obtained using each ML technique, emphasiz-
ing the parameters associated with each one.

Decision tree (DT)
Several parameters are critical for deciding the

model’s performance and interpretability in COVID-
19 diagnosis using CXR images. DTs are an ML model
that uses data-learned rules to generate decisions.

• Criterion: A split’s quality can be evaluated using
entropy Eq. (7).

• Maximum depth of the tree is 10
• Sets minimum leaf samples to 2; node split re-

quires 1 sample.
• Information Gain (IG): Employed by Eq. (8).

Table 1 details the effectiveness and reliability of
the DT algorithm for COVID-19 CXR image diagnosis.
It provides information about the model’s capacity
to diagnose COVID-19 occurrences and aids in calcu-
lating critical metrics, including accuracy, precision,
recall, and F1-score.

Random forest (RF)
Important parameters in RF approach are used to

find features that can distinguish COVID-19 situations
from those that do not:

• The number of trees in the forest is 100.
• A criterion for splitting: 70% for training and 30%

for testing.
• The maximum depth of each tree is 10.
• Minimum samples are required to split a node 5.
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Table 1. DT evaluation metrics for COVID-19 diagnosis using CXR images.

Algorithm Accuracy Class Precision Recall F1-score

Decision Tree (DT) 0.88

1 0.96 0.94 0.95
2 0.89 0.95 0.92
3 0.83 0.79 0.81
4 0.79 0.82 0.81
5 0.95 0.92 0.93

weighted average 0.89 0.88 0.88

Table 2. Evaluation metrics of RF for detection of COVID-19 using CXR image.

Model ML Accuracy Class Precision Recall F1-score

Random Forest (RF) 0.45

1 1.00 0.31 0.48
2 0.00 0.00 0.00
3 0.13 0.22 0.16
4 0.17 0.69 0.27
5 1.00 0.83 0.90

weighted average 0.86 0.45 0.54

Table 3. Evaluation metrics of SGD for diagnosis of COVID-19 using CXR images.

Model ML Accuracy Class Precision Recall F1-score

Stochastic Gradient Descent (SGD) 0.70

1 0.80 0.91 0.85
2 0.76 0.94 0.84
3 0.00 0.00 0.00
4 0.96 0.49 0.65
5 0.93 0.70 0.80

weighted average 0.89 0.70 0.76

The relationships between nodes in a DT branch
are heavily influenced by these parameters and the
Gini index, as shown in Eq. (9). To help forecast
the more likely outcome of a given branch, the Gini
index makes it easier to compute the Gini impurity
using class distribution and probabilities. Table 2
deduces some information from the specified met-
rics. Each class’s precision, recall, and F1-score values
demonstrate how well the system recognizes COVID-
19 occurrences in various classes. The accuracy shows
the RF algorithm’s correctness in diagnosing COVID-
19 CXR images.

Stochastic gradient descent (SGD)
SGD is an essential technique for neural networks

and a cornerstone of many ML methods; crucial pa-
rameters and features of COVID-19 in this domain
include:

• Learning Rate (η): This option controls the step
size set to 0.01 during iterative descent.

• Number of Iterations (Epochs): 1000; SGD is de-
fined as a process that iteratively approaches the
minimal point by gradually reducing the slope of
a function.

These parameters help SGD work, especially with
suitable convex loss functions, linear classifiers, and

regressors. In this work, PCA extracts crucial features
to maximise COVID-19 diagnosis accuracy with SGD.
Eq. (10), which represents SGD, describes the itera-
tive optimisation process, whereas Eq. (11) describes
the parameter update method using the chosen learn-
ing rate (0.01).

Table 3 presents the SGD algorithm’s effectiveness
and reliability for COVID-19 CXR image diagnosis,
offering a more comprehensive understanding of its
performance in successfully recognizing COVID-19
instances.

Logistic regression (LR)
In LR, a model that calculates the likelihood of a

certain result depending on input factors, relevant
parameters and aspects include:

• Regularization Term (Set C Parameter:(1.0): The
C parameter affects regularisation strength and
penalises big coefficients to prevent overfitting.

• Solver (‘liblinear’): This solver algorithm, ‘liblin-
ear,’ affects the LR model optimisation procedure.

• Maximum Iterations: set (100) iterations or
epochs controls optimisation algorithm conver-
gence during model training.

• Sigmoid Function: The sigmoid function Eq. (12)
converts projected values into probabilities
between 0 and 1.
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Table 4. Evaluation metrics of LR for detection of COVID-19 using CXR images.

Model ML Accuracy Class Precision Recall F1-score

Linear Regression (LR) 0.74

1 0.80 0.91 0.85
2 0.79 0.89 0.84
3 0.85 0.55 0.67
4 0.32 0.74 0.45
5 0.89 0.72 0.80

weighted average 0.80 0.74 0.75

Table 5. Evaluation metrics of KNN for detection of COVID-19 using CXR images.

Model ML Accuracy Class Precision Recall F1-score

K-Nearest Neighbors (KNN) 0.71

1 0.76 0.87 0.81
2 0.83 0.88 0.85
3 0.62 0.55 0.58
4 0.51 0.60 0.55
5 0.82 0.69 0.75

weighted average 0.80 0.74 0.72

• Mean Squared Error (MSE): MSE cost function
Eq. (13) measures model performance by calculat-
ing the average difference between expected and
actual values.

As predicted, these parameters help the LR model
predict outcomes, including COVID-19 patients. The
regularization term, solver choice, and maximum
iterations affect optimization, while the sigmoid func-
tion and MSE transform predictions and evaluate
model correctness.

The LR algorithm assessment metrics for the analy-
sis of COVID-19 using the CXR image are in Table 4.
These metrics are critical in measuring the effective-
ness and reliability of the LR algorithm for COVID-19
CXR image diagnosis, allowing for a thorough as-
sessment of its performance in accurately detecting
COVID-19 cases.

K-Nearest neighbor (KNN)
Important KNN algorithm parameters for assessing

its performance and dependability in COVID-19 CXR
image diagnosis include:

• Number of Neighbors (k): ‘k’ is set to 5 to re-
flect the nearest neighbors used for forecasts. This
setting affects decision boundary granularity and
model sensitivity to local patterns.

• Distance Metric (Euclidean): The Euclidean dis-
tance metric Eq. (14) is used. This metric measure
instance similarity by calculating the straight-line
distance between data points in multidimensional
space.

• Weight Function (Distance): is ‘distance,’ indi-
cating that closer neighbours impact prediction
more than faraway ones. This weighting approach
improves algorithm performance by prioritising
neighboring instances during decision-making.

These parameters influence the KNN algorithm’s
learning approach and prediction power for COVID-
19 diagnosis using CXR pictures. The supervised ML
algorithm KNN uses these criteria, mainly the number
of neighbors and the distance measure, to categorise
unknown samples based on their k nearest neighbors’
votes. The parameters help the system adapt to med-
ical picture data.

The KNN algorithm assessment metrics for COVID-
19 CXR image diagnosis are in Table 5. These
criteria are critical in measuring the effectiveness
and reliability of the KNN algorithm for diagnosis of
COVID-19 using CXR images, allowing for a thorough
assessment of its performance in accurately detecting
COVID-19 instances.

Gaussian naive bayes (GNB)
Important features and parameters in the field of

GNB for COVID-19 detection using CXR images are
summarised below:

• Feature Independence Assumption in COVID-19
Like Naive Bayes (NB) classifiers, GNB assumes
feature independence and treats each feature’s
value as distinct. GNB is effective and simple be-
cause this assumption simplifies modelling.

• Supervised Learning Framework: Supervised
learning helps apply GNB to real-world situations.
Supervised learning trains the model using
labelled data to predict new occurrences.

• Utilization of Gaussian Distributions: When work-
ing with continuous data, GNB assumes a Gaus-
sian (normal) distribution for class values. For
COVID-19 CXR image classification, this trait is
especially useful for continuous features.

• Feature Likelihood Estimation: Eq. (15) shows
how GNB estimates feature likelihood using the
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Table 6. Evaluation metrics of GNB for detection of COVID-19 using CXR images.

Model ML Accuracy Class Precision Recall F1-score

Gaussian Naive Bayes (GNB) 0.77

1 0.96 0.96 0.96
2 0.87 1.00 0.93
3 0.04 0.33 0.07
4 0.92 0.48 0.63
5 1.00 0.90 0.95

weighted average 0.92 0.77 0.81

Gaussian distribution for continuous values. The
probability density function for continuous data
is calculated using the mean in this equation. In-
corporating the mean (µy) and standard deviation
(σy) parameters for each class (y).

The parameters of GNB describe its technique, which
focuses on assuming feature independence, being
suitable for supervised learning scenarios, and using
Gaussian distributions to handle continuous data for
COVID-19 identification in CXR images.

Table 6 provides a more comprehensive evaluation
of the GNB algorithm’s performance in COVID-19
diagnosis utilizing CXR images. This table provides
useful information about the model’s capacity to rec-
ognize COVID-19 occurrences and aids in calculating
critical assessment metrics such as accuracy, preci-
sion, recall, and F1-score.

Evaluation performance comparison of machine
learning algorithms

From the above results, it can be observed that the
DT algorithm has the highest accuracy (0.88) and F1-
score (0.88) among the evaluated algorithms. It also
demonstrates high precision and recall for Class 1,
indicating good performance in correctly identifying
COVID-19 cases. The LR and SGD algorithms also
show competitive results with relatively high accu-
racy and F1-scores. On the other hand, KNN and
RF algorithms exhibit lower accuracy and F1-scores
than the different algorithms. RF has deficient perfor-
mance, especially regarding precision and recall for
Class 1. It’s important to note that the quality and
amount of the dataset, feature extraction approaches,
hyperparameter adjustment, and the unique proper-
ties of the COVID-19 CXR pictures utilized can all
impact the success of these algorithms. Further tun-
ing and experimentation may be required to increase
the algorithms’ accuracy in diagnosing COVID-19.
Fig. 7 is most likely a comparison of the performance
of these algorithms based on specified evaluation
metrics. Of course, creating a new DL model for
COVID-19 diagnosis using similar tools can still be
improved. Using CXR pictures to develop a DL for

diagnosing COVID-19 is a potential strategy for im-
proving speed and accuracy.

The outcome analysis shows various ML models
exhibit differing performance levels. Using balanced
criteria for precision, recall, and F1-score, RF showed
a respectable accuracy of 45%. With a 70% improve-
ment in accuracy, SGD demonstrated an admirable
harmony between recall, precision, and F1-score.
With identical precision, recall, and F1-score val-
ues, LR and KNN attained 74% and 71% accuracy,
respectively. GNB’s 77% accuracy demonstrated its
performance compared to other models, showcasing
its excellent recall, F1-score, and precision. Re-
markably, the DT stood out as the best-performing
model, surpassing all others with an impressive ac-
curacy of 88% and demonstrating its efficacy in the
specific context through solid precision, recall, and
F1-score metrics. Using DT to classify CXR images
has several advantages. One is that it provides a tech-
nique for image classification that is transparent and
easy to understand. Regarding CXR data, DT is the
way to manage numerical and categorical char-
acteristics. This allows for good image category
categorization. Their ability to detect non-linear con-
nections in the image features improves the precision
of classification. Furthermore, DT handles missing
values in CXR datasets with aplomb. They are useful
in classifying CXR images because they are versatile,
easy to deploy, and can discover essential elements.
Table 7 compares prior research that compared the
use of CXR images for COVID-19 identification.

ML model results suggest intriguing research
avenues. Adjusting CXR image quality, dataset
sizes, and preprocessing approaches may improve
COVID-19 diagnosis accuracy. These research
directions aim to improve COVID-19 diagnostics
using ML, considering image quality, dataset features,
and preprocessing methods. In addition to Traditional
PCA, investigating other CXR image feature extrac-
tion methods are crucial to improving diagnostic
procedures. While Traditional PCA was used for
dimensionality reduction in this work, it is essential to
note that the choice of PCA variations, such as sparse,
kernel, Incremental PCA (IPCA), or Robust PCA, can
affect the principal component properties. Despite
these changes, PCA transforms data into orthogonal
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Fig. 7. Conclusion of the evaluation of ML algorithms for accuracy, precision, recall, and F1-score.

Table 7. Comparing previous works using chest X-Ray images for COVID-19 detection.

References No. of class and N0 of chest X-rays Technique Accuracy (%)

22 3-Class/8851 CXR/all images COVID-19 (498) Machine learning classifiers 76
29 4-class Normal (1341), pneumonia (1345), COVID-19 (757)

and Bacterial pneumonia (2782)
Multi-stage framework 87

31 3-Class/1345 CXR/Normal (109), pneumonia (1126), and
COVID-19 (110)

Naïve Bayes 87

31 4-class/not available. COVID-Net 83
33 2-Class-Normal, and COVID-19 Lasso-Logistic regression 85

vectors (principal components) in feature space.
In future work, can intend to extend our proposed
method using deep-feature extractors using re-trained
models such as Google-Net, ResNet, Xception and an-
other model.60,61 These models need larger datasets
to extract the best features and to ensure an accurate
classification using our proposed ML techniques.
Furthermore, Vision Transformers can be applied to
address the limitations of CNNs, as proposed in.61

Conclusion

The CXR images can aid in detecting COVID-19
-related diseases, although their significance is
typically overlooked. Using chest CXR images, this
study examined multiple ML algorithms for accurate
COVID-19 diagnosis. Histogram equalization was em-
ployed to enhance the CXR images, followed by resiz-
ing images and feature extraction utilizing PCA tech-
niques. PCA’s main advantage is its ability to reduce
large dataset’s dimensionality while maintaining the
most crucial variance information. Various ML mod-
els were employed after completing all preprocessing
steps on CXR images and identifying optimal features.

DT has the most excellent weighted average for all
parameters among the six classification algorithms
tested (DT, RF, SGD, LR, GNB, and KNN), showing
higher performance than the other models. The DT
stood out as the best-performing model, surpassing
all others with an impressive accuracy of 88% and
demonstrating its efficacy in the specific context
through solid precision, recall, and F1-score metrics.

Since our dataset is almost balanced, in the realm
of creating an automated system for classifying
medical images, addressing imbalanced data poses a
notable hurdle. This challenge emerges when there’s
a substantial discrepancy in sample numbers among
various classes, impacting the model’s accuracy by
favoring the majority class over accurately categoriz-
ing the minority class. Additionally, optimizing
preprocessing methods with recently updated
PCA extraction features should enhance accuracy
in classifying COVID-19 in glossy CXR images.
To improve the performance of CXR imagine
classification, future work will involve including
deep-feature extractors, re-trained models (such
as Google Net, ResNet, Xception, etc.), increasing
datasets, and applying specific transfer learning
approaches. Using similar techniques, future research
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can investigate DL models for COVID-19 diagnosis.
Alternate and updated PCA versions or other datasets
could be investigated.
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