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Abstract

In this work, the four-dimensional Lotka-Volterra model (4DLV) involving four species in a constant
environment is considered. The objective of this investigation is to study the local bifurcations occurring
in the system. This system has at most sixteen possible equilibrium points. One of the equilibrium points
is considered in order to investigate the periodic solutions that bifurcate from the Hopf and the zero-Hopf
equilibrium points, respectively. It has been proven that, five families of sufficient conditions exist on the
parameters of the system in which the Jacobian matrix at equilibrium point has a pair of purely imaginary
+ iw, w > 0 and two non-positive eigenvalues. Moreover, eight families of sufficient conditions exist on
the parameters in which the Jacobian matrix at the equilibrium point has a pair of purely imaginary
eigenvalues +iw and at least one of the other eigenvalues is zero. Next, this investigation reveals that
certain four-dimensional Lotka-Volterra subsystems exhibit one periodic solution bifurcating from the
Hopf equilibrium point and three periodic solutions bifurcating from the zero-Hopf equilibrium point
respectively. The averaging method in any order for computing periodic solutions consists of providing
sufficient conditions for the existence of periodic solutions in polynomial differential systems by studying
the equilibrium points of their associated averaged systems. Then, the main tool utilized is the first-order
averaging method to compute periodic solutions that bifurcate from the Hopf and zero-Hopf singular points
of the four-dimensional Lotka-Volterra system under certain conditions. Finally, the obtained theoretical
results are supported and verified by numerical examples.

Keywords: Averaging theory, Lotka-Volterra system, Periodic solutions, Quadratic polynomial
differential system, Zero-Hopf bifurcation.

Introduction

In biological populations theory, Alfred Lotka ~ where b; > 0 is the growth rate of the ith
and Vito Volterra separately proposed the Lotka-  population, a; ;/b; are interaction coefficients that
Volterra systems in 1925 and 1926, respectively.  determine how much the j th species affects the i th
These systems describe the interaction of n species. ~ POPulation’s growth rate, and x;(t) represents

There are n first-order differential equations in them. populatl-on.s SIZ€ -at time t. Numerous mathemat[cal
models in fields like as physics, ecology, economics,

dx;i(t) s . A .
= x; () (b + Xfoy aij % (1), i=1,..,m, 1 etc. have used this framework as their foundation ®.
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This system provides a simplified model of prey-
predator interactions.

Our consideration is started with the following
4DLYV system %

X =x(a; + a;1x + apy + a3z + aguw),
Yy =Y(by + by1x + byy + by3Z + byaw),
2 = Z(Cl + Cllx + Clzy + Clgz + C14_W),

W = W(dl + dllx + dlzy + d13Z + d14W),

as a model for the competition of the four biological
species (x,y,z and w are written instead of
x(t),y(t),z(t) and w(t), respectively). In this
model, each of variables x,y,zand w describes the
number of individuals of species (so that x, y, z,w >
0), also ay, by, ¢1,dy,a45,b1j,¢1,dy forj=1,234
are real parameters which are the interaction
coefficients, and the a,, by, ¢;, d, are parameters that
depend on the environment. For instance, if one of
a;, by, cq,dy is greater than zero, it means that this
species is able to increase with food from the
environment, while if one of a4, by, ¢4, d; is smaller
than zero, it means that this species cannot survive
when left alone in the environment. One can also
have some of a4, by, ¢4, d; be zero, which means that
the population stays constant if the species do not
interact.

The Hopf bifurcation in a differential system
happens when a complex conjugate pair of
eigenvalues of a Jacobian matrix at a singular point
becomes purely imaginary eigenvalues. As a result,
a Hopf bifurcation can arise only in systems of
dimension two or higher. The crucial aspect is that
Hopf bifurcation is concerned with the birth or death
of a periodic solution as it emanates from or shrinks
onto a singular point, the focus. Hopf bifurcation has
been vastly investigated by many researchers *°.
Hopf bifurcation, as is well known, produces
periodic solutions, which are characteristic
oscillatory behaviors of many nonlinear systems ¢
Here, the first object is studying the Hopf bifurcation
in system (2). A singular point of system (2) having
eigenvalues +iw and nonpositive real numbers «a, 8
with nonpositive «, 8 € R such that af8 # 0 is called
the Hopf equilibrium. The second object is studying
a zero-Hopf bifurcation in system (2). So, a singular
point of system (2) having eigenvalues +iw and
other eigenvalues which are zero is called the zero-

Hopf singular point. Such a kind of bifurcation is
described in %, 1t is known that Lotka—Volterra
systems can demonstrate zero-Hopf singular points
10

A closed orbit I, of system (2) bifurcates from
the singular point if it tends to it as € — 0. The study
will explore the existence of periodic orbits of system
(2) in the neighborhood of the singular point when e
equal to zero. The zero-Hopf and Hopf bifurcations
are the bifurcations in a neighborhood of an isolated
singular point. It is common for a small-amplitude
periodic orbit to either appear or disappear around
this kind of singular point if the stability type of this
point changes when it varies near zero. Such a kind
of bifurcation is described in . Then a natural
question is: how many periodic orbits can bifurcate
from system (4) with a zero-Hopf or the Hopf
singular point inside the class of all Lotka-Volterra
systems (2). Therefore, the existence of the number
of periodic orbits which can bifurcate from a zero-
Hopf singular point as well as the Hopf singular point
when this is perturbed inside the class of all systems
(4) is studied, see Theorems 1 and 2 which are the
main results in this investigation.

There are a few investigations on system (2);
Kowgier # showed that how survival probabilities of
four populations alter with an assumption that they
arrived an equilibrium level given by the same
member of individuals. Farhan et al.*? investigated
the stability of the four-dimensional Lotka-Volterra
model. Wang and Xiao 2 explore the method of
occurrence of chaotic behavior and studied
numerically that a periodic orbit by Hopf bifurcation
can undergo successive period doubling cascade of
system (2).

Computing the periodic solutions may be done
in a variety of methods, such as using the bifurcation
theory, Melnikov integral, and Poincare return map,
the Center manifold theorem and Normal forms. To
find the number of the periodic solutions which
bifurcate from a zero- Hopf and the Hopf point, the
first-order averaging technique is used. As you can
see in ¥ % one of the most crucial methods for
analyzing periodic orbits for second- and higher-
order differential systems is the averaging technique.
The publications written by Djedid et al. '® have
further information on the averaging theory.
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The focus is on the existence of periodic
solutions for the differential system (2) that bifurcate
from a single singular point with eigenvalues +iw
and two zeros.

Hopf and Zero-Hopf Singular Points

System (2) has sixteen E;,i = 1, ...,16 singular
points which are calculated in °. Only the following
equilibria E; can have a pair of purely conjugate
complex eigenvalues

bici2—b12¢1

E, = (0 _ _bicyz—by3cy
1 — ) )
biz¢13—b13C12 " b12€13—b13C12

biz¢13 — bi3c12 # 0,

, 0), such that

_ a1€13—A13C1 a1C€11—A11C1
E, =(- ,0),

such

@11€13—043€11 G11€13—A13C11
that a,1c13 — aq3¢11 # 0,

__ _Gib1p—a45by  aibyy—aq11by

E3=

,0,0), such that

ay11b12—12b11 " A11b12—a12b11
ay1b12 — ay2b11 # 0,

€1d14—C1401 ¢1d13—C13d1

E, =(0,0,— , , such that
4 ( €13d14—C14d13 C13d14—C14d13)

C13d14 — C14d13 # 0,

bidis—bi4d, bidip—bipd4

Es = (0,— ,0, ), such
bi2d14—b14d1> bi2d14—b14d1>
that b12d14 - b14d12 ¢ 0,
aidi4—aq4d ad{1—aq1d
E6 — (_ 1014—A140, 1011-A11081 )’ such

7 ) )
a11d14—0a14d11 a11d14—0A14d11

that a11d14 - a14d11 * 0,
1
E; = " (—(a1b12¢13 — a1by3¢12 — agzbyci3 +
ay2b13¢1 + ay3b1C15 — A13b12¢1), (A1b11C13
— a1bi3¢11 — ay1b1Cy3 + ag1by3cq +
ay3b1¢11 — a13b11¢1), —(A1b11C12 — a1byz614
—Qa11b1¢12 + ay1b12¢1 + ag2b1011 —
a12b11¢1),0),
1
Eg = (0, _a(b1013d14 — byCy4dq3 — by3cidys +
by3cy4dy + biscidy3 — b14Ce3dy),
1
E(b1012d14 — byiCy4d13 — bypcidys +

b13¢14d1 + biaC1di; — b1aCe2dy),

1
_n_z(blclzdﬂ — byci3dy — bypcidyz +

biz¢13dy + bizcidq; — bi3ci2dq)),

Eq = (—i (a1€13d14 — A1€14d13 — A1361d1s +
A13€14d; + A14€61d13 — A14€13d4), 0,
1
. (a1€11d14 — A1€14d11 — A1161dys +
a11C14d1 + A1461d1q — A14C11d1),
1
T (aic11d13 — ay¢13dy; — a1161d13 +
a11€13d; + a13¢1d11 — Ay3€11d4)),
Eiyp = (_i(alblzdltl — a1byadiy — agpbidig +
A12b14dy + ay4bydy; — ag4by2dy),
n%(a1b11d14 — ayby4dyy — g1 dis +
A11b14d1+a14b1dyy — a14b11d4),0,
_77_14 (a1b11dy2 — a1bipdyy — a1 bydyi; +
ay1b12dy + aypb1dqy — ay2b11d4)),

where

y Na =

a1 Q13 Q14
<C11 C13 C14>
din diz dys
a11 Q12 A4

<b11 by, b14>
din diz dig

, such that n;n,n3n4 # 0

After computations using the Maple computer
software, the print-out of the four non-zero
coordinates of the singular point E,, which takes up
nearly two pages, has been excluded. Farhan et al.?,
they analyzed the local stability of all possible
singular points and showed that eight of them are
unstable, while the rest of them are locally
asymptotically stable under certain conditions.

Without losing generality, only the singular
point E, is considered in this study. The following
proposition is to establish conditions under which
system (2)'s singular point has a pair of purely
conjugate complex eigenvalues.

Proposition 1: There are only five families H;,i =
1,---,5 of conditions on the parameters of system (2)
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in which the Jacobian matrix at the singular point E,
has a pair of purely conjugate complex eigenvalues
+iw and non-zero eigenvalues a, 8 € R. That is

Hy={a; =0,by3 = M'Cn =

(.02
aq;(w?+cd) _ _ _
— oz 3= ay3,dy = +¢,dyy =
2
C1a11 _
41, = 0},

wZ
Hy; ={a; = T4 = 0,by =

1
Baizci—w?byz _ _ Bcyiteidyg _

w2a11—w2011+612a11

Hz ={a, = e yaA13 =
1€11
1304, (w?+cf)-cr1w?(2a11=¢11) b, =
a11C%C11 UL
Baiiciz—Pc11c13+a11b13¢1
c13(ay1—¢11)

dy = B,dy; = 0,dy3 = 0}.

)

a1(a—c —dq,)?+w?d?

H, ={a, = 11(211—¢11)(B—d4) 11
di1¢11(B—dy)

c13((B—dy)?a?  +w?di)) b, = a11b13(B—dy)+Bcizdyy

a1 (B-dy)?cyy 'L

yaA13 =

€13d11 ’
¢ = (a11—5‘1111)1(3—d1),d13 — 0}

_ _ (a13—c13)(b1-PB) _
Hs={byz="—"———,1=
(c13—asz)w?+aics

Cqiq =
a13aq 11

a11(cf3(w2+a%)+a)2a13(a13—2(:13))

2 )
ajai3ci3

2 2 2

d. = Baiaz3—w-a3+twciz+aicys de. =

1= U111 —
a13a1

a11(a13—613)(w2a13—a)2613—a§(:13) d _ 0}
13 — .
a%a13013 ’

Proposition 2: There are only eight families F;, j =
1,--+,8 of conditions on the parameters of system (2)
in which the Jacobian matrix at the singular point E,
has a pair of purely conjugate complex +iw, and
a, B € R eigenvalues with @ = 0 or § = 0. That is

c13(w?+a?)
Fy ={a;3 ="——+ w? :
(w?by3—aybiciz)eny

w2cys

b1 =

61 =0,¢11 = aq1}-

2

w
F,={a, = —q:an =0,byy =
(w?byz+assbici)cig
2 , €13 = 0}-
€1a13
w2
F3={a;; =0,¢; = —a_l'C13 =0,dy3 =
(w2d11+011d1a1)a13}
c1103
_ _ _ c13(w?+a}) _ _
Fo={an =cpa3=""_57—"",¢=0,dy3=
(m2d11+c‘11d1a1)613}
w2C11 !
2 2 2
_ _ wa11-w°C11+Cciay, _
Fs ={a, = yA13 =

C1C11
2,2 2 2,2 L2 a2
ciz(w?ai;—2w?asic1+w?cfi +adycf) be, =
» P11 —

2
a11€1C11
a11b1301—a11b1c13+b1C11C13}

C1C13

wzall—w2011+0%a11

Fo ={a; = erons »A13 =
ci13(w?a?;—2w?ay e twict; +ad c?) dia =
aiicicrs T
c13(a11d1+cld11—011d1)}
a11€1 .

_ b (a13—c13)

F;={a, = b €1 =
13
_ w?bf3-aszbiciz+bicts Cor =
bizbiaiz 1

2 p2.2

(0?b33+bcis)asq de. = __Qq1by3dy dis =0
b2 yY11 — b y¥13 — }
a1307C13 1C13

Fg ={b13 = a3 — ¢y3,¢1 =

2 2 2
_ WTa33—WTC13—A71C13

Caq =
ai3aq 11

2,2 2 2.2 2.2
ar1(w?aiz;—2w?as3ci3+w?ciz+aicds) dii =
»y¥11 —

2
ajai3Ci3
a11d1(a13—C13) _
——————==d 3 = 0}.
aiC13

The proof of Propositions 1 and 2 are given in the
next Section. Because of this, the singular point E,
under each family #;,i = 1,---,5and F;,j = 1,---,8
of conditions in Propositions 1 and 2, respectively, is
the Hopf point.

Furthermore, without loss of generality, in order to
find periodic solutions bifurcating from the Hopf
point of system (2), the family #; of conditions in
Proposition 1 is examined and the first-order
averaging method is applied. The most important
result of this investigation, which is the following
theorem, explains this.
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Theorem 1: Consider system (2) with the family #;
of conditions in Proposition 1. Let d;5 = eu,, witha
sufficiently small parameter € > 0. If

p f#0,

where £ is a polynomial of parameters in system (2).
Then, system (2) has the Hopf bifurcation at the
singular point which localizes at the singular point
E,, and when € = 0, a periodic solution is produced
at this singular point.

Theorem 1 is proved in the next section.

Now, this study investigates a zero-Hopf bifurcation
of system (2), focusing on the family F; of conditions
in Proposition 2. The Jacobian matrix of system (2)
at the singular point E, with the family F; of
conditions in Proposition 2 has the following
eigenvalues

/11'2 = i(l), A3 = ﬁ = 0, A4 =Qa
2 2
w°ay1dy3 — W cy3dyq — A1041C13d4

a1011C13

In order to have two zero and two purely conjugate
complex eigenvalues, assume that

_ (aj1di3—cq13di1)w?
d, = . 3
a1a11€13

Proof of the main results

In this section, firstly, propositions 1 and 2 will
be proved. Theorems 1 and 2 will then be
demonstrated after that.

1. Proof of Proposition 1

Proof: The characteristic polynomial at E, of system
(2)is

(l)(/l) = 2.4 + 5113 + 52/12 + 532. + 54_,

where S; for i=1,---,4 are given in the
(Supplemental Material section). Suppose that the
system (2) has two purely conjugate complex
eigenvalues at E,. Then, ¢(41) must have the
following form

PN =A-a)A-BA +w?) =2*—(a+
LA + (af + w?)A% — w?(a + BA + afw?,

with w > 0, and for any nonpositive real numbers
a, B € R. The proof is directly made by comparing

Determining the following theorem as a result.

Theorem 2: Consider system (2) with the family F,
of conditions in Proposition 2 and Eq. 3. Let ¢; =
€ Uy, With € > 0, a sufficiently small parameter. If

U1 f2 # 0,

where f, is a polynomial of parameters in system (2).
Then, at the singular point, system (2) exhibits the
zero-Hopf bifurcation, which localizes at E,, and
when e = 0, at most three closed orbits bifurcate at
this singular point.

Theorem 2 is proved in the next section using the
averaging method of the first order.

To investigate the closed orbits that bifurcate
from the zero-Hopf and Hopf singular points of
system (2) by employing the first-order averaging
technique of the first-order (see The Main Tool), a
small parameter will be introduced to create a new
independent variable in a periodic system.

The rest of this research is structured as follows: In
the next section, Theorems 1 and 2 are proven, and a
first-order averaging method is described in The
Main Tool for computing periodic solutions
bifurcating from zero-Hopf and Hopf singular points.

the coefficients in both ¢ (1). After calculations with
the Maple computer program, the families H;,i =
1,---,5 of conditions given in Proposition 1 are
followed.

The Jacobian matrix of system (2) under the
family conditions ¢, at the singular point E, has the

eigenvalues Az = tiw,A3 = fand A, =
—w?b . .

% = a, With a;,¢; # 0. This means that
11¢1

E, is the Hopf point.
2. Proof of Proposition 2

Proof: The proof is omitted as it is similar to the
proof of Proposition 1, only by imposing the
characteristic polynomial of the Jacobian matrix at
E, of system (2) as

dD) =21 —a)(A*> +w?) =2* + 5,23 +
SyA% + S3A + S,
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After transforming equilibrium E, to the origin,
system (2) becomes

(._ a1+a11(x+x0)+ )
*= (x + XO) (alzy + a13(Z + Zo) + a14,W !
- ( by + by (x + x) + )

) Y b1,y + b13(z + 2zy) + byaw/’

. 1 +ci1(x +x) + )

2= (z+2) (612)/ + c13(z + zy) + W/’

kW _ W(dl + dll(x + XO) + dlZy +)

d13(Z + Zo) + d14_W

auc

4

a,c13—a43C
where xy = ——2—2 7, =
a11€13—A13C11

a1€11~A11C1
a11€13—Q13C11

3. Proof of Theorem 1

Proof: Let the perturbation d,5 = € u, be satisfied.
Then, after transforming the interior singular point
E, to the origin and re-scaling the variables,
(x,v,2z,w) = (ex, €y, €z,ew), system (2) is written
as follows

((eagic1x — w )(anx + a2y + ag3z + aguw)),

a1301m2 ((ec1a132 + w?)(cf a1 x + w? (1% + C12y + ag3Z + c14W))),

aq3c1 w2

Now, the linear part of system (5) at the origin may
be represented in its real Jordan normal form, that is,
when € = 0, the linear part at the origin of the system
(5) will be transformed

0 —w 0 0
[w 0 0 0
J=lo 0 a o

00 o0 B

This is accomplished by using the linear change of
the coordinates (x,y,z,w) = P.(X,Y,Z,W),and P
with its inverse P! are

a1 w? vs ai3w? Vi
c1 V3 c1 c13(B2+w?)
2 C1Va V2
p= V3 c13(B%+w?)
2 )
a1 w
0 —— 0 0
V3
C1
0 0 0 .
a11a13w
P—l
/0 0 C1Vy Voa130 \
2 4 4032 2
| 311 w Cl (ﬂ +w ) |
V3
0 0 ~a 0
_ 11
= _ _ 3
€1 _ 1 —c1(v4 — v5) a0’ (cvy + vy)
2 2 4 4(R32 2
w*ag3 w*aq3 a11a13W c1*(B? + w?)
5
0 0 0 11130
1

where

(%
il ] e mz ((c1a11(€a13¢1(B — by)z + w?(€(by1x + bypy + biaw) + B)) — b)),

((cras3(eciay x + w?(uyze? + €(dyaw + dy2y) + B)) + ew*iy)).

— Bcia + ag4¢q), Va
= w3(a14018 — a140* + c1402),

V1 = w4(ﬂa14

V3

_ 2. 202 2 2 4
= Cl(all ¢1°B* — 2a31by1c1fw* + by w
+w2a112c12),

_ 3 2 2

Vy = a110°(a11Q1261 — A110120% + A11C10° +
2

aj2b1w%),

_ 4 2
Vs = a0 (1112618 — A11€1261 8 — Aq2b 0
2 2
+ b11C120° + A11A12617).

Then, in order to analyze the closed orbits of this
system when € is too small, the new variables
(X,Y,Z,W) is then created by transforming system
(5). To do this, the class of the cylindrical
coordinates described below is employed:

(X,Y,Z,W) = (rcos(0),rsin(8), Z, W).

Introducing also 6 as the new independent variable.
Thus, system (5) becomes

(4 iz d_W)T
de’de’ de
€(fir, for, f31)T + 0(€?) 6

Using the notations from Theorem 3 (see The Main
Tool for the state of Theorem 3), thereist = 0,T =
2m,x = (r,Z, W), and
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f11(0,7,Z, W)
f218,7,Z,W) |.
f31(0,7,Z,W)

f0,x) = £1(6,r,Z,W) =

The averaged function is given by

Fi1(r,Z,W)
FZl(rl Z' W) )
F31(T, Z' W)

Fl(x) = Fl(r'Z'W) =

2m

Fii(r,Z,W) = e f11(6,7,Z,W)d6

0

= 2euer VTS,
11

1 .2

Fy (r,Z, W) = Efo” f1(6,7,Z,W)dO =
z

~oitar (c1v1V3Z + va® W),

7

2
Fsr(r,Z, W) = — 7 f31(6,7,2,W)d6 =

(a13 C1V1V6Z+a13V0(DSW—Zﬂlvl(l)s) w

2a43C1V1 w3

where v; for i=0,---,6 are given in the
(Supplemental Material section). Therefore, the
system Fi,(r,Z, W) =F,,(r,Z, W) =
F31(r,Z,W)=0 has three solutions s; =
(0,0,7),s, = (0,0, W,) and s3 = (0, Z,, W,). After
calculations with the Maple computer program, the
print-out of singular points s;,s, and s; occupies
more than one page. Only the solution s; =
(0,Z,, W) can be here considered. The others are
not good solutions.

In addition, the determinant of the Jacobian

0 (F11,F24,F. H
9 Fa1Fs1) ot the solution s3 takes non-zero value.
a(r,zw)

- . OF
Existing the solution s; and det(a—;)kozowo) =
U1 f, such that u, f # 0. Asaresult, Theorem 3 (see

The Main Tool for the state of Theorem 3) states that
system (6) has a periodic solution when € > 0.

An illustration, by following example, is shown to
demonstrate that system (2) has a limit cycle that
bifurcates from the Hopf bifurcation. The following
system is under consideration:

(a'c:x(—Zx—y—22+w),

i}’=y(—2x—y—6z—4). 8
z=z(-4x—-y—-2z—w+1),
w=w(—2x+y+ez—2w),

with € > 0. The singular point (%, 0,‘71, 0) of system

(8) is the Hopf point with eigenvalues —1, —2 and
+i. The averaged functions of Eq.7 of Theorem 1 are

3r
Fiy(r,Z,W) = 7(2 + W), F2
Z
= — > (1122 +27W + 16),F5,
__ 1287 + 15W

System F;; = F,; = F3; =0 has the following
three solutions

s, =(0,0,7), s, = (0,—%,0) and s; =
5 _128
37’ 111)'

(o,

s, and s, are not good solutions. In addition, the
following is the value of the Jacobian matrix at s3

a(Fll' F21, F31) S
a(r,Z,W) 3

1130

det( = —%

which is different from zero. By Theorem 1 using the
averaging method, system (8) has a periodic solution.
By MATLAB simulation, each periodic solution in
the projection space is plotted see Fig. 1.
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(a) (b)
Figure 1. in (2D and 3D): MATLAB simulation showing the (x, z) —space and (x, y, z) —space plot of
the Lotka-Volterra model (11) depicting limit cycle for X(0) = (25€ + 0.5,15¢, —5€¢ — 0.5, 1. 6€),
trange= 0:0.01:9 and € = 0.0005.

4. Proof of Theorem 2 _Gs %Ghs P _Ps
a1 a11@  A11042 ajia,?
Proof: Let system (2) satisfy the perturbation ¢c; =  p — 0 0 1p pl Copl=
€ 1, and Eq. 3. Then, after re-scaling the variables \ 1 0 —ﬁ —T‘;a/
(x,y,z,w) = (ex, ey, ez,ew), and translating the 0 0 1 2
interior singular point E, to the origin, system (2) is 0 % 1 —%
1341 1341
expressed as follows: a11®  —W(R2P1—2Pr+Ps—P3) W @ (P1—P2+Ps—P3)
€134 a;3c13 a a;3c13
. 1 2 0 1
X = el (((a1 — i) w? + eag(as x — #1)) (w?lay Yy Ay + C3Z + a14w)0+ c13afz)j 1
y= ” C13w2 (63’ (a1 (w?by3 — aibyci3)(agx — py) + Wﬁélie((bny + b3z + byyw)a; + .U1b1))),
b,
Z= - ((C14W +ag1x + ¢y + ci32) (eci3aiz + (E.upl_:a{‘)a(%l)l) t a4 — Cra — C12)
W= a11613a2 (ew(c13(a11af (d11X + dipy + di3z + dygw) — dyypy (@0? £ g)z)é C}g 13!110) 2)). 6'14)
9

Now that e = 0, the real Jordan normal form of the
linear component at the origin of system (9) may be
expressed, the linear part at the origin of system (9)
will be transformed into its real Jordan normal form,
as follows

0 —w 0 0
w 0 0 0
0 O 0 0
0 0 0 0

This is accomplished by using the linear change of
the coordinates (x,y,z,w) = P.(X,Y,Z, W), where
P with its inverse P! are

p3 = (a12 + 2014 — 2¢14 — C13)
2
a;,°(c12 +2¢14),  Pa
= w?(ay; + 2a14 — €12 — 2¢14).

Then, in order to analyze the closed orbits of this
system when € is too small, the new variables
(X,Y,Z, W) is then created by transforming system
(9). To do this, the class of the cylindrical
coordinates described below is employed:

(X,Y,Z,W) = (rcos(0),rsin(8), Z, W).

By introducing also 6 as a new independent variable,
as demonstrated in Theorem 1, the averaged function
is given

Fi.(r,Z,W)
Fpr(r, Z, W) |,
F31(rl Zl W)

Fl(x) = Fl(rIZ!W) =
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r

Fi1(r,Z,W) = W(%Z + U W — yag;ci3aiw?),
1
For (r, Z,W) = m(Z(uSZ — tuz) + W(ugZ + 2u,W — 2u4uy)), 10

1
F3(r,Z,W) = =

ajcizw=asy

where wu; for i=1,---,8 are given in the
(Supplemental Material section).

Therefore, the system F,(r, Z, W) =
Fy1(r,Z,W) = F3,(r,Z,W) = 0 has the following
four solutions

s, = (0’0’0)'52 — (0’ 21 P2 - #1P2)’S3 —
P1 P1

(0’_“1_%’”1_93)'54 — (0,”1_”7’_”1_%)’

P4 P4 Pe Pe

where p; for i=1,---,7 are given in the
(Supplemental Material section). After calculations,
sy is not a good solution. Only the solutions
s,,Ss3and s, are considered. In addition, the
0(F11,F21,F31)

Watthe
solutions s,, s and s, takes non-zero value. Existing

determinant of the Jacobian matrix

. oF;
the solutions s,,s; and s, and det (E) |s,55,5, =

Uy f2, such that uy f, # 0. Thus, from Theorem 3
(see also The Main Tool for Theorem 3), gives that
system (2) under the generic conditions has three
periodic solutions bifurcations from zero-Hopf
singular point for € > 0.

An illustration, by following example, is
shown to demonstrate that system (2) has three limit
cycles that bifurcates from the zero-Hopf bifurcation.
The following system is under consideration

y=y(=2y —2z+w-—2),
z2=2z(-2x -2y —z—w+ 2¢),
w=w(-2x—y—2z—-2w),

X=x(-2x—-y-—-2z+w-1),
! 11

— (Z(uy —ugZ) — W(ugoZ + ui W — pyug)),

with € > 0. The singular point (%,0,—1,0) of

system (11) is the zero-Hopf point. Following the
steps of first-order averaging theory, the following
averaged functions are obtained:

(Fi (r,Z, W) = —r(8Z + 6W + 1),

Fyr(r,Z,W) = 2Z(29Z + 11) + 3W(29Z + 11W + 6),

F31(r,Z,W) = —8Z(8Z + 3) — 2W (19W + 49Z + 10).

12
Then, system (12) has the following four solutions
Sl = (0,0,0), SZ = (O,_l,l), S3 =
4 2

(03,-4), 5, = (0,-2,9).

s; is not a good solution. The other solutions

S,,S3 and s, give us

det (22) ,=4%0, det (22) , =20%
0, and det(%) .= —%;& 0

In addition, the determinant of the Jacobian matrix

0(F11,F21,F: H
9ErwFors1) ot pach solution s,, s; and s, takes non-
a(r,ZwW)

zero. Using the averaging method, system (11) has
three periodic solutions. By MATLAB simulation,
each periodic solution in the projection space is
plotted see Figs. 2-4. Furthermore, all periodic
solutions together in one figure are plotted (see Fig.
5).
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0.3 0.4 0.5 0.6 07 08
X

(a) (b)

Figure 2. in (2D and 3D): MATLAB simulation showing the (x, z) —space and (x, y, z) —space plot of
the Lotka-Volterra model (11) depicting limit cycle for X(0) = (0.35(e + 1),€,—€ — 1,0), trange=
0:0.01:6.4 and € = 0.000005.

-125

(a) (b)

Figure 3. in (2D and 3D): MATLAB simulation showing the (x, z) —space and (x, z, w) —space plot of
the Lotka-Volterra model (11) depicting limit cycle for X(0) = (0.6(10€ + 1),0,—6€ — 1, —2¢),
trange= 0:0.01:6.4 and € = 0.000005.

07 x10®
8
08
-09 6
-1
> 4
N-11
12 2
-13
0
14 05
1
15 4 0.8
0.6
-16 L . N . L L . ' 15 0.4
02 03 04 05 06 07 08 09 1 rd 0.2 X
X

Figure 4. in (2D and 3D): MATLAB simulation showing the (x,z) —space and (x,y, z) —space plot of
the Lotka-Volterra model (11) depicting limit cycle for X(0) = (0.75(1.42¢ + 1), 1.43¢,—1.71€ —
1,—-0.57¢), trange= 0:0.01: 6.4 and € = 0.000005.
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X
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Figure 5. in (2D): MATLAB simulation showing the (x, z) —space

The Main Tool
First-order averaging method

This section presents the results of the
averaging theory (For a general introduction to this
method, one can see %), which is necessary to
prove our results (Theorems 1 and 2). Consider the
differential equation below

x =¢eF (t,x) +
e2F,(t,x,¢), x(0) = x,

and

13

y=¢e9®), y(0)=x, 14

with x, y and x, where an open subset Q of R™,t €
[0,0),& € (0, &]. Setting

1 T
and suppose that F; and F, are periodic with respect
to period T in the variable t. Additionally, denoting

Supplemental Material

1
1 (11C1a — G13C1e (((a1 1 TG 1)C13

+ci1(dyz —ag3 + b13))a11
+ a;cy3(dyq

+by1—c11) — ¢11(dy3 + bi3)ay
- ((dll + bi1)cy

b
—cy1(by + dl))aIS)' !

all first derivatives of g by D,g and all second
derivatives of g by D,, g, respectively. For a proof
of the next result, see %°.

Theorem 3: Suppose that y(t) € Q fort € [0,1/¢]
and that F;,D,F,,D,,F,; and D, F, are continuous
and bounded by that is not dependent on ¢ in
[0,00) x Q X (0, &]. Then the following statements
hold:

1. x(t) — y(t) = 0(¢), is satisfied for t € [0,1/¢]
ase— 0.

2. If system (21) has a singular point E # 0 such that
detD, g(E) # 0,

then, a T-periodic solution x(t, &) of system (13)
exists, which is close to E and such that x(0, &) —
E=0(g)ase—0

1
m«((% — by —dy)ay — (b +

dyc; + b1d1)0123 + C1((d13 + bi3)a;  +ci(dys —
ai3 + by3) + (by + dy)ay3 — dyzby — dyby3)cis —
7 ((dy3 + biz)ayz — dizbss )ady + (a1(ay(diq +
1~ ¢11) + (dig + by +cpq(by +dy) —

52=
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dy1by — dybyq)cis - (011(‘113 +by3)ai +
((2((d11 + by1)ay3 + (diz + by3)cyp) — dyghyz —
d13b11)c1 - ((b1 +dy)a,3 +dq3by +
dibyz)ci)a; + ags ((dll + by)ef = (c11(by +
dy) +dy1by +dibyq) ¢+ 2b1d1c11))C13 +
€1 (C11((d13 + by3)asz — 2dy3by3)a; +
a3 (((dn + byy +c11)ass

di3b11)c; — ((by + dy)ags — dyzby —
d1b13)cll))) a1 — ((dn + by1)cq —
di1bi)aicis + ((a13C11 + (d13 + biz)ern —
dy1b13 — dizbyg)ciia; + agz (((dn + bi1)ci
—2dq1b11)cy — ((bl +dy)c; —dyg by —
d1b11)c11)) ay¢y3 + aibyzcfidyz +
a13C11((d13b11 —ay3¢11 +dygby3)cy —
c11(dy3by + d1b13))a1 —a%3(cy1by —
c1b11)(cdyy — C11d1)),

_d11b13 -

1
53 - (ai1€13—-a13¢11)3 ((((bl + d1)61 B bldl)al B

b1C1d1) - (((d13 + by3)cy —

dy3by —dyby3)a; + ((bl +dy)ay3 —dqyzby —
d1b13)c1 - b1d1a13)C123 - C12 (a;dy3bi3 —
(ay3(dy3 +b13) — dizbyz)ey + ag3 (dyshy +
d1b13))c13 + d13cfa13b13)ai‘1 + ((((C11(2d13 +
2by3) — di1b13 — dyzby1)cr — c11(dyshy +
d1b13))a% + ((Z(dn + byy)ag3 —dybyz —
di3byq)c? —((011(b1 +dy) + 2dy1 b +
2d1by1)agz + 2¢11(dy3by + d1b13))c1 +
2b1d1a13611)a1 -

d11by3 + dy3by1)cic11(di3hy + d1b13))) C%)
af; + (a% (((dn + by1)cyq — d11b11)a1 -
di1bi1¢q — c11(dy1by + d1b11)) ¢ty — ag(eqa(
¢11(dyz + by3) — dy1byz — dyzbyg)ag +

((((dn + by1)ciq — 3d11b11)a13 — 2¢41(dy3b11
+d11b13))C1 - C11((2C11(b1 +dy) —dy1by —
dibi1)ass + c15(dizby + d1b13))) a; — 2a;3
(=bydicy + b11C12d11)) cfs3 — (afd13b130121 +
C11 (((C11(d13 + by3) + 2dy3by1 + 2d11by3)

a3 + 3dizbizcig)er — c11a43(dishy +
d1b13))af + aq3 ((((dn + by1)cqg +
3d11b11)a13 + 2¢y;(dy3byq + d11b13))012 +

((C11(b1 +dy) — 2dy1by — 2d1b11)ag3 —

2(dy3by +diby3)  cip)ergcr + bidiagscty)ag —
crafz(byciy — byqcy)(cdyg — C11d1)) €13t
agzcy(afbiscl; diz + agzer((2e11(dys + by3) +
dy1bz + dizbi1)e; — ¢11(dizby + diby3))a; +
af3((( byg + dyq)eqs + dygbig)ef — cqq(cqa(by +
di) +dy1by +dibyy)ey + b1d1C121))) a;; +
a1C11(a%C133d11b11 - a1(C11((d11 + byp)agz +
di1by3 + d13b11)a1 —ay3(ci1(dy1by + dybyq) —
2d11b11C1))C123 + (((d13 + by3)a;3 +
d13b13)C121a% + (((Zdn +2by)agz +  dygbiz +
dy3bi1)cy — ((bl +dy)ay3 + dqzby +
d1b13)C11)a13C11a1 - ‘153 (byc11 — b11cy)

(c1dy1 — C11d1))c13 - a%3C11C1(C11(d13 +

bi3)a; + ((d1g + b11)ey — c11(by + d1))a13))),

a13C1((d11b1 +dybyy)ey — ( ) ) cnd @
a1€11 — A11€1)(A1C13 — Q1301 a1(C11093 — €130
2 =
Zbldlcll)) Ci3 — a4 (((dll + b))y +cpa(by + 54 (@11C13 — a13€11)3 <<_a11((:1d13 — ¢13d) + (c1dyq

d;) —dy1by —  dibip)a; — (dygby +diby)cy — —cndl)a13)( ay(b11615 — b13€11) ))
bydici1)cis + (2afdyzbisers — i ((cr1(dys + ~@11(b1€13 — b1scr) + arz(brcry — bucy)
bi3) — 2dy3b11 — 2dy1bi3)as3 — 3dyzbizci)ay —

iz (((dll + b11)a;3 — dygbyz — d13b11)C12 -
((2¢11(by + dy) + dy1by + dyby1)ags —
c11(dq3by + d1b13))01 + 2bldla13C11)) €1C13 —

a3 (2a1d13b13c11 + a;3((cq1(dyz + b13) +

Uy = (€13dyq — a11d13)(c14 — A1) 0* +
(((b1(a12 —c12) —ag(ca + C12))C13 +

2
a1b13612) a1 +c14d1101C13) A 07 —

3
C12€13a7b1a41,
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Uy = 2(c13dyg — ag1dq3)(c1a — ‘114)604
+ (a11 ((b1(a12 — C12)
—a;(2cq4 + C12))C13
+a1by3C15)+2¢140d1101C13) a1 02 —
ClZC13a%b1a111
uz = w*(a1dy3 — ¢13dy1) + w?af(2a;,by3 —
¢13d11) — 2a;a11 b1 c13(w* + a),
Uy = w*(a;1dy3 — c13dyy) + w?aZ(a;1by3 —
¢13d11) — a1a11b;c13(w? + ad),
us = (¢13d1; — a11d13) (€12 + €14 — A15 — A1) 0*
+ ((((Zb12 +2by, — dy,
—dyg)ay
+2by(C12 + €14 — Q12 — a14))C13 -

2a,b13(c14 + Clz)) ap; +ci3dygas(cia +

Clz)) 6110)2
+2¢13a3byagq(c1q + €12),
ug = (c13dy1 — ag1d13)(3cy; + 4cy4 — 3ag;
— 4a;,)w*
+ (((al (4b1; — 3dy; — 4dq,
+6b14) + 2b1(2612 + 3C14 - Zalz - 3a14))C13
—2a,by3(2¢15 + 3614)) aq1
+aic13dss
(3¢ + 4614))a1a)2 + 2a11¢13b1(2¢15 + 3c14)a3,
u; = (c13dy1 — ag1d43)(C12 + 2014 — a4
— 2a14)w*
+a; ((((blz + 2b1y —dy
—2d14)ay
+b1(c12 + 2¢14 —ag3 — 2a14))C13
—a;by3(2¢14 + 012)) aqq
+ ¢13d11a1(2¢14 + C12)) w?
+e13a3b1as1(2¢14 + ¢12),
ug = Qw*a;1dyz — 2w*cizdy; + w?afay bz —
sza%cmdn - w2a1a11b1613 - a11afb1013)’
Ug = (C13d11 — a31d43)(C14 + €12 — A1 — ay4)w*
+a ((((bu + b1y — dy3
—dyg)ay
+by(Cc14 + €12 — Qg — a14))C13

—apby3(cq + Clz)) aqq

+ c13d11a1(cra + C12)> w?

+cy3a3bya11(c14 + €12),
ugo = (c13d11 — ay1d13) (3 + 4cyq — 3ay;
—4a)w*
+ (a1 (2byz + 3b14 — 3d1
—4dy4) + by (2¢12 + 3c14 — 204, — 3a14))C13

— (2¢12 + 3c14)bi3a1)agq
+ c13d11aq
(Bc1z + 4cq4))a;w? + by (2¢1, + 3c14)c1303 a4,
Uyg = 2(c13dy1 — A11d43) (2C14 + €12 — Ay
—2a,4)0*

+a; ((((11(1912 + 2byy — 2dy,
—4dy4) + by (2c14 + 12 — g5 — 2a14))C13
—a1by3(2¢14 + C12)) asq
+ 2c43d11a4
(2c14 + C12))w2 + ¢13a3b1a11(2¢14 + ¢132).

p1= ((a1b12 — yaby + bycyp)w? +
a%b1C12) ¢13 — w?aybyzcy,
p2 = —b;(0* + af)cyz + w?asbys, p3 =
—dy; (0* + af)cyz + wagqdss,
Pa = (—d11(a14 — ci)w? — af(ay1dis —
C14d11)) C13 + w?ay1dq3(ass — €14,
ps = (w? + a%)(dn(bu + byy) w?
+ a;byaq1(dy, + d14))C123
- a)z((d13(b12 + byg)ag,
+dy1b13(as, + a14))a)2
+ a11a1(b13(d12 +dig)ay
+di3by(a; + a14))) C13
tw*dizasibis(as; + ag),
Pe = (_dll(_a12b14 + a14b1; — b1pC14 +
b14012)004 —a (((b12d14 — by4dqz)a; + by (
A14d12 — A12dy4 + Cpdqy — Cl4d12))a11
+ d11ay(=bypc14 + b14C12)) w?
—aibyay(
Ci2dq14 — C14d12))C123
+ wz((dn(—alzbm + a14by;
— b15C14 + b14€C12)a11 + digbys(
A14C12 — a12614))w2
+ allal(b13(012d14 — C14d12) a4

+ dy3bi(—agpci4 + a14c12)))


https://doi.org/10.21123/bsj.2024.9456

Published Online First: August, 2024
https://doi.org/10.21123/bsj.2024.9456
P-ISSN: 2078-8665 - E-ISSN: 2411-7986

g

Baghdad Science Journal

4
€13 — w*dq3a11b13(—a12¢14 + a14C13),

p; = (w? +a%)(

w*dy3a;1b13(a; + 2a44).

Results and Discussion

The Lotka-Volterra systems have been widely
utilized for modelling a broad range of natural
phenomena, including the time evolution of
competing species in biology, chemical processes,
and many other phenomena. In non-linear
differential systems, it is highly intriguing and
crucial to know whether a system has periodic
solutions. In this investigation, the first result in this
paper proved that there are only five families of
conditions on the parameters of the four-dimensional
Lotka-Volterra system in which the Jacobian matrix
at one of its singular points has a pair of purely
conjugate complex eigenvalues and non-zero
eigenvalues (this was explained in Proposition 1).
Moreover, that there are only eight families of
conditions on the parameters of the four-dimensional
Lotka-Volterra system were proved in which the
Jacobian matrix at one of its singular points has a pair

Conclusion

In this paper, the 4DLV differential system was
considered. This type of system has sixteen
equilibrium points. The values of the parameters
were described for which the zero-Hopf and a Hopf
bifurcation occur at one of its equilibrium points for
this system. There are five families of sufficient
conditions for parameters of this type of system (see
Proposition 1) for which one of its equilibrium points
is the Hopf equilibrium point. Moreover, there are
eight families of sufficient conditions for parameters
of this type of system (see Proposition 2) for which
one of its equilibrium points becomes a zero-Hopf

dy1(b1z + 2bys)w?
+a byay1(dy; + 2dy4)

dq1b13(as; + 2a14))w2
+a1a11(b13(d12 + 2dy4)a; +dy3bi(ag; + 2‘114))

)C123 - ((d13(b12 +2by4)ag +

>a)zcl3 +

of purely conjugate complex and at least one of the
other eigenvalues is zero (this was explained in
Proposition 2). The second result in this paper is
Theorem 1 and Theorem 2, which give the periodic
solutions of the four-dimensional Lotka-Volterra
system. Theorem 1 states that the four-dimensional
Lotka-Volterra system exhibits Hopf bifurcation at
one of its singular points and that a periodic solution
is bifurcated at that singular point. Theorem 2 states
that the zero-Hopf bifurcation occurs at one of its
singular points and that at most three periodic
solutions bifurcate at this singular point. At the same
time, the first-order averaging method was applied to
determine the number of periodic solutions around
the zero-Hopf and Hopf equilibrium points. It is
believed by us that there are still other interesting
relevancies between the two bifurcations, and further
exploration is needed.

equilibrium point. Consequently, the existence of
periodic solutions in a certain class of the Lotka-
Volterra systems is proved by the classical first-order
averaging method (see the above result and
discussion section). This method gives the periodic
solutions of the 4DLV system. It follows from
Theorem 3 that any sufficiently small system has a
periodic solution with period near 2z. Clearly, this
periodic solution tends to the origin of the
coordinates when € — 0. Therefore, this is the small
amplitude periodic solution, which starts at the zero-
Hopf or a Hopf equilibrium point.
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