

Page | 609

2024, 21(2 Special Issue): 0609-0621

https://doi.org/10.21123/bsj.2024.9604

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

An Exploratory Study of History-based Test Case Prioritization

Techniques on Different Datasets

S. M. Junaid H.*
1,2

, Dayang N. A. Jawawi
1

, Johanna Ahmad
1

1
Faculty of Computing, Universiti Teknologi Malaysia (UTM), Johor Bahru, Malaysia.

2
Department of Information Technology, Faculty of Information & Communication Technology (FICT), Balochistan

University of Information Technology, Engineering, and Management Sciences (BUITEMS), Quetta, Pakistan.

*Corresponding Author.

PARS2023: Postgraduate Annual Research Seminars 2023.

Received 22/09/2023, Revised 10/02/2024, Accepted 12/02/2024, Published 25/02/2024

 © 2022 The Author(s). Published by College of Science for Women, University of Baghdad.

This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International

License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Introduction

The software development life cycle consists of

many stages but testing is one of the important

phases of the software development lifecycle.

Software testing comprises different activities but

Abstract

In regression testing, Test case prioritization (TCP) is a technique to arrange all the available test

cases. TCP techniques can improve fault detection performance which is measured by the average

percentage of fault detection (APFD). History-based TCP is one of the TCP techniques that consider

the history of past data to prioritize test cases. The issue of equal priority allocation to test cases is a

common problem for most TCP techniques. However, this problem has not been explored in history-

based TCP techniques. To solve this problem in regression testing, most of the researchers resort to

random sorting of test cases. This study aims to investigate equal priority in history-based TCP

techniques. The first objective is to implement different history-based TCP techniques. The second

objective is to explore the problem of equal priority in history-based TCP techniques. The third

objective is to explore random sorting as a solution to the problem of equal priority in history-based

TCP techniques. Datasets of historical records of test cases from conventional and modern sources

were collected. History-based TCP techniques were applied to different datasets. The History-based

TCP techniques were investigated for the problem of equal priority. Then random sorting was

explored as a solution to the problem of equal priority. Finally, the results were elaborated in terms of

APFD and execution time. The results indicate that history-based techniques also suffer from the

problem of equal priority like other types of TCP techniques. Secondly, random sorting does not

produce optimal results while trying to solve the problem of equal priority in history-based TCP.

Furthermore, random sorting deteriorates the results of history-based TCP techniques when employed

to solve the problem of equal priority. One should resort to random sorting if no other solution exists.

The decision to choose the best solution requires a cost-benefit analysis of context and solutions at

hand.

Keywords: Average Percentage of Fault Detected, Equal Priority, History Based, Random, Regression

Testing, Test Case Prioritization.

https://doi.org/10.21123/bsj.2024.9604
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-8634-7547
mailto:smjunaid.it@gmail.com
https://orcid.org/0000-0001-8300-8523
mailto:dayang@utm.my
https://orcid.org/0000-0002-1620-0264
mailto:johanna@utm.my

Page | 610

2024, 21(2 Special Issue): 0609-0621

https://doi.org/10.21123/bsj.2024.9604

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

test case generation and optimization are at the

forefront
1
. Test case optimization can be further

divided into 3 activities TCP, test case selection

(TCS), and test case minimization (TCM). TCP

amongst its other counterparts has proven to be

more useful as it does not compromise the test

cases, while TCS selects some test cases from

among the available set of test cases according to

some objective, which might miss some important

test cases and in TCM it reduces the test suit to a

minimal number of test cases required which may

compromise the ability of test cases to detect faults

in future as the test cases are permanently removed
2-

4
.

There are different techniques used to prioritize test

cases. These techniques use different data,

procedures, and factors such as coverage data,

requirements of the software, development history

of software, search algorithms, and the similarity

between test cases
2
. Coverage-based approaches

work on the principle of how much code is covered

by a test case, but it does not always guarantee good

performance
5,6

. Requirements-based approaches can

be employed in the initial phases because they use

user requirements that are available in the

beginning
7
. Similarly, historical approaches use past

data from software development which is analogous

to stock market prediction where the future can be

predicted with the help of past data. It can also be

used in the early phases. In Search-based

techniques, algorithms can be used to search for the

best solutions according to the provided constraints.

Similarity-based approaches use commonness

among test cases and code to prioritize test cases
2
.

TCP techniques suffer from different problems such

as equal priority, not achieving high APFD, running

identical test cases recurrently, the enormous size of

the test suite, resource scarcity, and incomplete

coverage of code
8,9

.

TCP techniques using history-based approaches are

gaining popularity among researchers over time and

the availability of historical data has also

increased
10

. Previously it was difficult to find

historical data because it was not recorded but now

with the efforts of researchers and industry, few

platforms are available from where historical data

can be acquired
2
. Open source datasets are more

commonly available as compared to industrial

datasets
10

. Secondly, historical data can be

generated by executing and analyzing the source

code available in version control repositories but

with the introduction of newer versions of software

tools, support for previous ones usually ends, so

while executing old projects to acquire data

researchers might run into errors. Efforts are

required to provide up-to-date datasets to the

research community so that different techniques can

be put to the test.

This research has three objectives; the primary

objective is to implement history-based TCP

techniques dispersed in the literature under one

roof, the secondary objective is to investigate the

problem of equal priority in history-based TCP

techniques and the tertiary objective is to explore

random sorting as a solution to the problem of equal

priority in history-based TCP techniques. Similar

work was found in the literature but with different

objectives
10

, the study has an objective to establish

which techniques work well for open and closed-

source projects and whether there is a technique that

works effectively for both types of projects.

However, the study at hand focuses on highlighting

the problems of history-based TCP techniques.

Literature Review

Researchers have presented history-based

techniques with only one history-based factor
11-13

.

Secondly, different studies have been found that

have utilized more than one history-based

factor
14,15

. Some researchers have incorporated one

or more than one type of TCP technique such as

coverage based, or similarity-based with history-

based technique to improve the performance of TCP

in regression testing
16,17

. The drawback of one type

of TCP technique may be reduced by combining it

with another type of TCP technique.

The most recent failure (MRF) has been derived

from the approach that makes use of history-based

and similarity-based TCP techniques
16

. An

approach that combined factors such as failure rate

(FR) with test case age to form an indicator to

prioritize test cases
15

. A history-based approach

Exponential Decay (ED) that makes use of a

statistical technique known as exponential

https://doi.org/10.21123/bsj.2024.9604

Page | 611

2024, 21(2 Special Issue): 0609-0621

https://doi.org/10.21123/bsj.2024.9604

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

smoothing to calculate the priority of test cases

based on their test case execution results
11

. The

approach can also be considered in terms of

coverage and test case age-based TCP approaches.

However, the coverage base is not under the scope

of this study as this study focuses on history-based

TCP approaches only. The history-based approach

is widely used by researchers. An industrial

weightage scheme named ROCKET (R) was

introduced to prioritize test cases using historical

records and the execution time of test cases
14

. The

ROCKET weightage scheme gives the maximum

importance to failure in the last run, then it gives

medium level importance to failure in the second

last run, and then least importance to failures in the

third last run and all previous runs.

The approach known as a co-failure-based approach

assigned failure probability to test cases according

to failing test cases and then rearranged them

accordingly
12

. The co-failure-based (CoF) approach

is dynamic because reprioritizes the test cases after

every run. The flipping history-based (FH)

approach uses the ROCKET to identify the first

failure and then statistically assigns priority to the

test cases based on the result of flipping
13

. Flipping

is when two test cases switch states simultaneously

that is pass or fail together. Terminator (T) has been

proposed in
17

. It has 3 different versions that are

similarity and feedback-based, feedback and

history-based, and similarity, history and feedback-

based. However, this study considers only history

and feedback-based approaches as similarity-based

is not in the scope of this study. Furthermore, this

technique was proposed for UI datasets that are

different from normal test cases. There are other

history-based techniques also which cannot be

discussed here due to space limitations.

TCP techniques use different factors to prioritize

test cases such as coverage-based factors,

similarity-based factors, and requirements-based

factors. Factors used in history-based techniques

include test case execution time
14

, test case age
11,15

,

and failure count
15

. However, the most fundamental

factor used in history-based approaches is test case

execution results
11-17

. Table 1 shows the factors

used by history-based techniques.

Table 1. Factors used by history-based techniques

Technique Test Case

Execution

Results

Test Case

Execution

Time

Test

Case Age

Failure

Count

Most Recent Failure (MRF)
16

 

Failure Rate (FR)
15

   

Exponential Decay (ED)
11

  

ROCKET (R)
14

  

Co-failure (CoF)
12

 

Flipping History (FH)
13

 

Terminator (T)
17

 

The most readily available data is related to test

case executions. However, the earlier datasets of

historical data of execution of test cases encounter

the issue of imbalance that is there are more pass

instances and fewer fail instances
2
. The imbalance

can affect the techniques depending on this type of

historical data. But with time the imbalance has

decreased. This may be due to the modern way of

software development by using version control tools

such as GitHub and the like, where developers from

around the world can work together and where the

platform records most of the data. Another factor is

the introduction of bug-tracking systems such as

Bugzilla and Jira, where bugs found in the software

are maintained. The nature and particulars of data

used may also change over time, earlier the

researchers used mutation-based testing, so the bugs

generated were mutation-based similarly this

resulted in the generation of mutation-based

historical data afterward the trend shifted to using

historical data of real bugs.

https://doi.org/10.21123/bsj.2024.9604

Page | 612

2024, 21(2 Special Issue): 0609-0621

https://doi.org/10.21123/bsj.2024.9604

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

Materials and Methods

The history-based TCP techniques considered in

this study are MRF, FR, R, ED, CoF, FH, and T.

The most recent failure with random (MRFR),

failure rate with random (FRR), ROCKET metric

with random (RR), Exponential Decay with random

(EDR), co-failure with random (CoFR), and

AFSAC flipping history with random (FHR). The

history-based techniques, history-based techniques

with random and random sorting will be applied to

the dataset. Then factors will be calculated by

techniques and based on factors test cases will be

arranged. In the next step test cases are run against

historical results to calculate the APFD metric and

execution time of each technique. Finally, APFD

results will be plotted in a graph to provide results

in a visual form to make comparison easier, and

execution time will be displayed in tabular form.

The whole process is presented in Fig. 1.

Figure 1. Flow of activities.

The dataset which contains execution results of test

cases from a recent study
10

 will be used. It provides

data from 30 projects collected from GitHub and

Travis CI, but only 12 projects will be included in

this study due to time and space constraints. Some

of the projects have an enormous amount of data.

The execution time of history-based techniques on

these projects may approach 18 hours or more
10

 so

projects with the appropriate amount of data were

utilized in this study. These datasets are mostly

based on Java and ruby programming languages,

while few of them use Python and C++. The

projects selected from the dataset
10

 are

deeplearning4j, structr, diaspora, okhttp, puppet,

rspec, loomia, parsl, wicket bootstrap, radical, titan,

and jetty project.

Table 2. Description of datasets selected from GitHub.

Project Name Total

Test

Cases

Maximum Number

of Failed Test

Cases in one build

Maximum Number

of times a single

test case failed

Total

Builds

Deeplearning4j 87 13 290 309

Okhttp 65 25 554 558

Puppet 54 12 361 386

Jetty project 159 56 156 156

Structr 188 44 830 830

Diaspora 104 62 251 1122

Titan 98 56 117 118

Rspec core 61 44 127 259

Radical 74 51 235 322

Parsl 77 6 15 193

Loomio 74 65 65 174

Wicket bootstrap 149 103 337 337

The dataset selected has some properties to ensure

that suitable test cases are selected such as the

number of test cases, number of builds, maximum

number of times a single test case fails, maximum

number of test cases failed in one build, number of

failed test cases, number of developers, duration of

project. The properties of selected projects from the

GitHub repository are mentioned in Table 2. Those

https://doi.org/10.21123/bsj.2024.9604

Page | 613

2024, 21(2 Special Issue): 0609-0621

https://doi.org/10.21123/bsj.2024.9604

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

projects were selected which had enough failed test

cases. The total number of test cases ranged from 54

– 188. The projects have more than 5 developers.

The duration of all the projects is more than 1 year.

The number of total builds ranges from 118 to 1122.

Failed test cases range from 6 to 830.

Secondly, 5 datasets from the Software-artifact

Infrastructure Repository (SIR) which is one of the

oldest repositories were selected based on the

properties of the projects
18

. SIR is a well-known

repository and has been used extensively by

researchers working on regression testing. It holds

different datasets comprised of projects developed

in the C programming language. In terms of test

cases, the GitHub datasets have a smaller number of

test cases while SIR datasets have a large number of

test cases. GitHub projects were tested more

extensively than SIR projects so the GitHub

datasets are enriched with extensive build data with

real faults which is a feature of modern workflow

systems while the SIR dataset lacks this feature

because, at the time of its inception, these modern

tools were not available at the disposal of software.

The projects selected from the SIR repository are

tcas, space, printtokens2, replace, and schedule2.

Tcas has been used in regression testing studies
18-20

.

Space has been used by researchers in software

testing
20-23

. Replace was used by scientists
20-23

.

Printtokens2 has been used by researhers
24,25-28

.

Schedule2 was utilized by studies
29-31

. Table 3

contains the properties of datasets collected from

SIR. It states the number of test cases, number of

versions, maximum number of times a single test

case fails, maximum number of test cases that failed

in one version, and number of failed test cases.

Table 3. Description of datasets selected from SIR.

Project Name Total

Test

Cases

Maximum Number

of Failed Test

Cases in one

version

Maximum Number

of times a single

test case failed

Total

Versions

Tcas 1608 8 133 41

Space 13585 13555 16 38

Printtokens2 4115 8 518 10

Replace 5542 10 309 32

Schedule2 2710 3 68 10

As this study is focused on history-based TCP the

similarity-based approach was omitted and only the

historical approach was considered
16

. Similarly, the

dataset used does not come with the execution time

of each test case, so it was not considered while

implementing
14

. Only failure rate was considered in

this study as test case age is not explicitly provided

in datasets
15

. Secondly, it would be difficult to

calculate it without sufficient information at hand.

Thirdly, if all test cases were run then it would not

make any significant difference.

Independent variables during the experiment were

history-based techniques (MRF, FR, R, ED, CoF,

FH, and T), history-based techniques with random

ordering (MRFR, FRR, RR, EDR, CoFR, and

FHR), and Random sorting. The dependent variable

will be APFD and execution time. The experimental

setup for conducting experiments consists of a

desktop personal computer with a core i7 processor

having 4 cores besides 8 threads and 16 GB of

RAM.

The selected projects are briefly described here.

Deeplearning4j is a collection of tools for

implementing and training deep learning models

using the JVM. Diaspora is a social network that

keeps privacy at the forefront. Jetty project is an

expandable web server written in Java language. It

is insubstantial in terms of resource usage. Puppet is

a server management system that can perform

administrative tasks automatically. Structr is a GUI-

based environment where users can create

applications with minimal coding skills. Okhttp is

an HTTP client which uses fewer resources and

loads content faster. Rspec core is a tool for code

maintainability. Loomio is a tool that supports

organizations working together in decision-making.

Parsl can be used to run Python on multiple systems

to provide parallelism. Titan is a project with which

https://doi.org/10.21123/bsj.2024.9604

Page | 614

2024, 21(2 Special Issue): 0609-0621

https://doi.org/10.21123/bsj.2024.9604

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

large graphs can be processed and stored. Radical is

a collection of tools that offer distributed computing

facilities for different tasks. Wicket bootstrap can be

used for the development of web applications.

The performance of TCP techniques is measured in

terms of fault detection and it is calculated with the

help of APFD
32

. APFD will be used to quantify the

performance of TCP techniques. Execution time
10

will be used to measure the performance of the

technique in terms of overhead incurred. APFD has

been used in studies
33-36

 to measure the

effectiveness of TCP techniques. APFD can be

calculated by the formula given in Eq. 1.

APFD = 1 −
TF1 + TF2 +⋯ + TFn

n × m
 +

1

2n

‧‧‧‧‧‧‧‧‧‧‧‧‧1

In Eq.1, TF1, TF2, and TFn represent the position of

the first fault detected in each of the n test cases in

the test set. The smaller the position, the better, as it

indicates that the fault was found earlier in the test.

The total number of test cases in your test set is

represented by n. The total number of faults in the

system being tested is represented by m. Time can

be calculated by counting the number of seconds

elapsed during the execution of a certain technique.

Results and Discussion

In this section, the performance and execution time

of history-based TCP techniques will be presented

and discussed when these techniques are applied to

different data sets. It was found that most of the

history-based techniques suffer from the problem of

equal priority and to solve this problem if random

sorting is employed it does not give optimal results.

Fig. 2(a-i) shows the box plot of 12 selected

projects and demonstrates the results of random,

history base with random sorting, and history base

techniques without random sorting. APFD is plotted

on the y-axis. TCP techniques used in this study are

plotted on the x-axis.

It can be observed that for all 12 projects, random

sorting is the worst-performing technique as it does

not arrange test cases according to some heuristic it

just randomly arranges them. After the random

sorting terminator is the second worst-performing

technique, this finding is in line with the findings

of
10

. MRF and ED are among the best-performing

techniques as shown in Fig. 2(a-i). FR, R, CoF, and

F perform similarly. Their performance lies in a

mediocre range when compared to best and worst-

performing techniques. However, it can be noticed

that using random techniques with history-based

techniques to solve equal priority does not yield

better results, in fact, it slightly deteriorates the

original performance of history-based techniques.

Moreover, including random adds some extra

overhead in terms of execution time. It is better to

merge two techniques when their synergy offers

better results than using the techniques separately.

Fig. 3(a-e) shows a boxplot of APFD of history-

based approaches on the SIR dataset. For tcas

dataset CoFR and CoF perform best, FHR and FH

are the second best performing techniques, R and

FR are the third best performing techniques and

random is the worst performing technique when

APFD is considered. The results of the SIR data set

are contradictory to the GitHub dataset results in

terms of APFD. For the Printtokens2 dataset except

T, the other techniques produce similar results.

Interestingly if look at the results of Schedule2 and

Printokens2, T is the best performing technique and

for the Replace dataset, it is the second best-

performing technique in terms of APFD. But if

execution time is considered while deciding to

select the best-performing technique, the T

technique is considered as the worst performing

technique. So a decision regarding the best-

performing technique can only be considered wise

if both execution time and APFD are taken into

consideration. For the space dataset, the execution

time exceeded several hours so the execution was

stopped and the APFD and execution time for

Random, MRFR, MRF, FRR, FR, EDR, ED, RR,

and R were collected.

It can be examined that there are outlier values in all

12 projects which means still the performance of

prioritization techniques can be improved.

Similarly, it can be noted in the SIR dataset results

https://doi.org/10.21123/bsj.2024.9604

Page | 615

2024, 21(2 Special Issue): 0609-0621

https://doi.org/10.21123/bsj.2024.9604

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

that still there is room for improvement. There is

minimal number of outliers in SIR dataset results

because the available data is limited. Upon careful

inspection of the dataset, it was noticed that one

reason behind the equal priority problem can be test

cases that produce similar results, that is when one

test passes the other passes, and when one test case

fails the other fails.

MRF = Most recent failure, MRFR = most recent failure with random, FR = failure rate, FRR failure rate

with random, R = ROCKET, RR = ROCKET with random, ED = Exponential Decay, EDR Exponential

Decay with random, CoF co-failure, CoFR co-failure with random, FHR = AFSAC flipping history with

random, FH = AFSAC flipping history, and T = terminator.

(a) Okhttp

(b) Diaspora

(c) Structr

(d) Deeplearning4j (e) Puppet (f) Jetty Project

(g) Loomio

(h) Titan

(i) Wicket bootstrap

(j) Rspec core

(k) Parsl

(l) Radical

Figure 2(a-i). APFD of history-based approaches on GitHub datasets.

https://doi.org/10.21123/bsj.2024.9604

Page | 616

2024, 21(2 Special Issue): 0609-0621

https://doi.org/10.21123/bsj.2024.9604

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

MRF = Most recent failure, MRFR = most recent failure with random, FR = failure rate, FRR failure rate

with random, R = ROCKET, RR = ROCKET with random, ED = Exponential Decay, EDR Exponential

Decay with random, CoF co-failure, CoFR co-failure with random, FHR = AFSAC flipping history with

random, FH = AFSAC flipping history, and T = terminator.

(a) Replace (b) Space

(c) Printtokens2 (d) Schedule2

(e) tcas

Figure 3(a-e). APFD of history-based approaches on SIR datasets.

A technique’s performance may improve in terms

of APFD if the number of versions and number of

test cases are increased but at the same time, it

becomes costly in terms of time to execute a

technique on larger data sets. On smaller datasets

such as printokens2 and schedule which have only

https://doi.org/10.21123/bsj.2024.9604

Page | 617

2024, 21(2 Special Issue): 0609-0621

https://doi.org/10.21123/bsj.2024.9604

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

10 versions of software and a smaller number of test

cases, the results are not dispersed due to the

smaller number of data points available and hence

no outliers can be tracked in Fig. 3(c) and Fig. 3(d).

While Fig. 3(e) tcas, Fig. 3(a) replace and Fig. 3(b)

space have a varied representation of the

performance of test cases when history-based

techniques are applied.

The execution time of history-based techniques

when applied to GitHub and SIR datasets is shown

in Table 4 and Table 5. In datasets from GitHub, the

terminator is the most expensive technique in terms

of execution time, Co-failure-based approach is the

second most expensive in terms of execution time

as it assigns failure probability and rearranges cases

every time a test case fails. Flipping history-based

approach is the third most expensive. Rocket is the

fourth most expensive technique. While random is

the least expensive technique for most of the data

sets it is approximately equal to zero which can be

viewed in Table 4

Table 4. Execution time of techniques on GitHub datasets.

 Rand. MRFR MRF FRR FR EDR ED RR R CoFR CoF FHR FH T

Deeplearning4j 0.04 0.7 0.7 0.9 0.9 1.1 1.5 1.5 1.4 73 76 5 5 167

Diaspora 0.14 6.6 6.5 15.1 16.2 18.2 18 24 24 1408 1343 201 206 3218

Jetty Project 0.03 0.3 0.3 0.4 0.4 0.5 0.5 0.7 0.6 61 59 3 3 136

Puppet 0.03 0.9 0.9 0.8 0.8 1.1 1.1 1.4 1.4 44 45 4 5 104

Okhttp 0.06 2.1 2.0 2.3 2.5 2.8 2.8 3.6 3.6 139 139 10 12 311

Structr 0.18 12.5 11.6 14.7 17.5 24.3 23 35 34 3414 3381 135 147 7193

Wicket bootstrap 0.06 0.8 0.7 2.0 1.9 2.6 2.4 2.9 2.9 259 254 182 186 904

titan 0.01 0.1 0.1 0.3 0.2 0.4 0.3 0.4 0.3 18 17 3.2 2.64 45

parsl 0.01 0.2 0.3 0.3 0.3 0.4 0.4 0.5 0.5 23 23 0.9 0.97 51

radical 0.03 0.6 0.6 0.8 0.8 1.1 1.0 1.3 1.4 57 53 7.7 7.55 133

rspec score 0.01 0.3 0.3 0.5 0.4 0.6 0.6 0.8 0.7 26 25 6.2 6.30 68

loomio 0.01 0.1 0.1 0.3 0.3 0.3 0.3 0.4 0.4 17 17 2.2 2.28 41

MRF = Most recent failure, MRFR = most recent failure with random, FR = failure rate, FRR failure rate with

random, R = ROCKET, RR = ROCKET with random, ED = Exponential Decay, EDR Exponential Decay with

random, CoF co-failure, CoFR co-failure with random, FHR = AFSAC flipping history with random, FH = AFSAC

flipping history, and T = terminator.

For SIR-based datasets, Table 5 shows that random

is the best-performing technique according to

execution time and terminator is the worst-

performing technique which matches the GitHub

dataset results. For the Space dataset, the execution

time for CoFR, CoF, FHR, FH, and T is not

available because the execution time went into the

exponential domain so the execution was stopped.

The reason behind this is the large number of test

cases as compared to the other datasets from SIR.

Table 5. Execution time of techniques on SIR datasets.

 Rand. MRFR MRF FRR FR EDR ED RR R CoFR CoF FHR FH T

Printtokens2 0.09 0.07 0.05 0.07 0.11 0.08 0.08 0.10 0.08 202 186 19 14 540

Replace 0.32 0.83 0.78 0.81 0.69 1.21 0.95 1.25 1.06 3600 2986 116 104 13896

Schedule2 0.02 0.05 0.03 0.04 0.03 0.04 0.03 0.04 0.03 82 61 2 2 401

TCAS 0.15 0.49 0.42 0.60 0.43 0.56 0.55 0.59 0.70 566 500 23 21 1463

Space 0.84 1.92 1.74 2.95 2.67 4.15 3.61 4.41 4.20 NA NA NA NA NA

MRF = Most recent failure, MRFR = most recent failure with random, FR = failure rate, FRR failure rate with

random, R = ROCKET, RR = ROCKET with random, ED = Exponential Decay, EDR Exponential Decay with

random, CoF co-failure, CoFR co-failure with random, FHR = AFSAC flipping history with random, FH =

AFSAC flipping history, and T = terminator.

https://doi.org/10.21123/bsj.2024.9604

Page | 618

2024, 21(2 Special Issue): 0609-0621

https://doi.org/10.21123/bsj.2024.9604

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

The variation in the performance of techniques over

different datasets can be attributed to differences in

software development methodology which has

evolved. However, the execution time sets a clear

message about the selection of technique for the

desired task. The decision of which technique works

best for a dataset depends on APFD and execution

time. When time and APFD are considered most

recent failure and exponential decay are the most

suitable techniques for selected datasets. Combining

random with history-based TCP techniques also

incurs a cost that may be insignificant for smaller

datasets but becomes significant when the size of

the dataset increases. Secondly, it can be noticed

that for best-performing techniques in terms of

execution time, adding random to the technique

slightly increases execution time but for techniques

that are worst performers regarding time adding

random would worsen the performance.

It was found that most of the history-based TCP

techniques face the problem of equal priority while

prioritizing test cases like other TCP techniques.

However, when random sorting is used to solve this

problem of equal priority, favorable results are not

achieved. The performance of history-based TCP

approaches deteriorates in terms of APFD, and

more time is incurred. Besides the problem of equal

priority, history-based TCP also faces the problem

of unavailability of data historical data, small

amount of available historical data, proper

formation of data, and imbalance in historical data.

Conclusion

History-based TCP techniques are encountered with

the problem of equal priority as many other

techniques of TCP do. Secondly using random

ordering is not the best solution to the problem of

equal priority in regression testing. To get to the

bottom of why equal priority issues are encountered

by history-based techniques the researchers

examined the dataset closely, it was found that the

test cases are acting alike as they pass and fail

simultaneously. Secondly, the properties inherited

in the datasets due to development processes

employed also play a major role in the ways certain

techniques react to these datasets. Individual

techniques respond differently because of the

features of datasets. So, to solve this problem

existing techniques are not sufficiently capable

enough as demonstrated with the help of

experiments. Code inspection-based approaches,

coverage-based, and change-based approaches can

be explored discretely and in combination in the

future to solve the problem of equal priority in

history-based TCP techniques.

Acknowledgment

The author would like to acknowledge the lab

associates and technical support staff of the lab at

UTM, Malaysia. The author wishes to convey

appreciation to the Higher Education Commission

(HEC), Pakistan for providing the opportunity to

study abroad and for supporting the author

financially for higher studies. The author

additionally recognizes BUITEMS, Pakistan, the

organization that offered opportunities and

assistance for further education.

Authors’ Declaration

- Conflicts of Interest: None.

- We hereby confirm that all the Figures and

Tables in the manuscript are ours. Furthermore,

any Figures and images, that are not ours, have

been included with the necessary permission for

re-publication, which is attached to the

manuscript.

- Ethical Clearance: The project was approved by

the local ethical committee in Universiti

Teknologi Malaysia.

https://doi.org/10.21123/bsj.2024.9604

Page | 619

2024, 21(2 Special Issue): 0609-0621

https://doi.org/10.21123/bsj.2024.9604

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

Authors’ Contribution Statement

S.M.J. H. discussed the idea with D.N.A J. and J. A.

S.M.J. H., D.N.A J., and, J. A. designed the study, J.

A. helped S.M.J. H. with data collection. S.M.J. H.

performed the experiments. S.M.J. H. drafted the

MS. D.N.A J. and J. A. proofread the MS. S.M.J. H.

revised the manuscript according to the comments

of D.N.A J. and J. A.

References

1. Younis MI, Alsewari AR, Khang NY, Zamli KZ.

CTJ: Input-output based relation combinatorial

testing strategy using jaya algorithm. Baghdad Sci. J.

. 2020 Sep 8;17(3 (Suppl.)):1002-1009.

https://dx.doi.org/10.21123/bsj.2020.17.3(Suppl.).100

2

2. Khatibsyarbini M, Isa MA, Jawawi DN, Tumeng R.

Test case prioritization approaches in regression

testing: A systematic literature review. Inf. Softw.

Technol.. 2018 Jan 1; 93:74-93.

https://doi.org/10.1016/j.infsof.2017.08.014

3. Gupta A, Mahapatra RP. Multifactor Algorithm for

Test Case Selection and Ordering. Baghdad Sci. J..

2021 Jun 20;18(2 (Suppl.)):1056-1075.

http://dx.doi.org/10.21123/bsj.2021.18.2(Suppl.).105

6

4. Bajaj A, Sangwan OP. A systematic literature review

of test case prioritization using genetic algorithms.

IEEE Access. 2019; 7:126355–75.

https://doi.org/10.1109/access.2019.2938260

5. Hao D, Zhang L, Zhang L, Rothermel G, Mei H. A

unified test case prioritization approach. ACM Trans.

Softw. Eng. Methodol.. 2014;24(2):1–31.

https://dx.doi.org/10.1145/2685614

6. Hao D, Zhang L, Zang L, Wang Y, Wu X, Xie T. To

be optimal or not in test-case prioritization. IEEE

Trans. Softw. Eng.. 2016;42(5):490–505.

https://dx.doi.org/10.1109/tse.2015.2496939

7. Srikanth H, Hettiarachchi C, Do H. Requirements

based test prioritization using risk factors: An

industrial study. Inf. Softw. Technol.. 2016; 69:71–

83. https://dx.doi.org/10.1016/j.infsof.2015.09.002

8. Lou Y, Chen J, Zhang L, Hao D. Chapter one-a

survey on regression test-case prioritization. vol. 113

of Adv. Comput. 2019;Volume 113:Pages 1-46

https://doi.org/10.1016/bs.adcom.2018.10.001

9. Dalal S, Assistant Professor, Maharshi Dayanand

University, Rohtak, India. Challenges of regression

testing: A pragmatic perspective. Int. J. Adv. Res.

Comput. Sci. 2018;9(1):499–503.

https://dx.doi.org/10.26483/ijarcs.v9i1.5424

10. Ling X, Agrawal R, Menzies T. How different is test

case prioritization for open and closed source

projects? IEEE Trans. Softw Eng. 2022;48(7):2526–

40. https://doi.org/10.1109/tse.2021.3063220

11. Kim JM, Porter A. A history-based test prioritization

technique for regression testing in resource

constrained environments. In Proc. - 24th Int. Conf.

Softw. Eng.. 2002 May 19 (pp. 119-129).

https://doi.org/10.1145/581339.581357

12. Marijan D, Gotlieb A, Sen S. Test case prioritization

for continuous regression testing: An industrial case

study. In: 2013 IEEE Int. Conf. softw. maint. .IEEE.

2013. https://doi.org/10.1109/icsm.2013.91

13. Cho Y, Kim J, Lee E. History-based test case

prioritization for failure information. In 2016 Proc. -

23rd Asia-Pac. Softw. Eng. Conf. (APSEC). IEEE;

2016. https://doi.org/10.1109/apsec.2016.066

14. Zhu Y, Shihab E, Rigby PC. Test re-prioritization in

continuous testing environments. In 2018 IEEE Int.

Conf. Softw. Maint. and Evol. (ICSME) 2018 ;Sep 23

:pp. 69-79. IEEE.

https://doi.org/10.1109/icsme.2018.00016

15. Fazlalizadeh Y, Khalilian A, Azgomi MA, Parsa S.

Prioritizing test cases for resource constraint

environments using historical test case performance

data. In: 2009 2nd IEEE Int. Conf. Comput. Sci. Inf.

Tech.. IEEE; 2009.

https://doi.org/10.1109/ICCSIT.2009.5234968

16. Hemmati H, Fang Z, Mantyla MV. Prioritizing

manual test cases in traditional and rapid release

environments. In: 2015 IEEE 8th Int. Conf. Softw.

Test., Verif. and Valid.. (ICST). IEEE. 2015.

https://doi.org/10.1109/ICST.2015.7102602

17. Yu Z, Fahid F, Menzies T, Rothermel G, Patrick K,

Cherian S. TERMINATOR: better automated UI test

case prioritization. In 2019: Proc. - 27th ACM Joint

Meeting on Eur. Softw. Eng. Conf. and Symp. on

Found. Softw. Eng.. New York, NY, USA: ACM;

2019. https://doi.org/10.1145/3338906.3340448

18. Qasim M, Bibi A, Hussain SJ, Jhanjhi NZ, Humayun

M, Sama NU. Test case prioritization techniques in

software regression testing: An overview. Int. j. adv.

appl. sci. .2021 May;8(5):107-21.

https://doi.org/10.21833/ijaas.2021.05.012

19. Khatibsyarbini M, Isa MA, Jawawi DN, Hamed HN,

Suffian MD. Test case prioritization using firefly

https://doi.org/10.21123/bsj.2024.9604
https://dx.doi.org/10.21123/bsj.2020.17.3(Suppl.).1002
https://dx.doi.org/10.21123/bsj.2020.17.3(Suppl.).1002
https://doi.org/10.1016/j.infsof.2017.08.014
http://dx.doi.org/10.21123/bsj.2021.18.2(Suppl.).1056
http://dx.doi.org/10.21123/bsj.2021.18.2(Suppl.).1056
https://doi.org/10.1109/access.2019.2938260
https://dx.doi.org/10.1145/2685614
https://dx.doi.org/10.1109/tse.2015.2496939
https://dx.doi.org/10.1016/j.infsof.2015.09.002
https://doi.org/10.1016/bs.adcom.2018.10.001
https://dx.doi.org/10.26483/ijarcs.v9i1.5424
https://doi.org/10.1109/tse.2021.3063220
https://doi.org/10.1145/581339.581357
https://doi.org/10.1109/icsm.2013.91
https://doi.org/10.1109/apsec.2016.066
https://doi.org/10.1109/icsme.2018.00016
https://doi.org/10.1109/ICCSIT.2009.5234968
https://doi.org/10.1109/ICST.2015.7102602
https://doi.org/10.1145/3338906.3340448
https://doi.org/10.21833/ijaas.2021.05.012

Page | 620

2024, 21(2 Special Issue): 0609-0621

https://doi.org/10.21123/bsj.2024.9604

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

algorithm for software testing. IEEE access. 2019 Sep

10; 7:132360-73.

https://doi.org/10.1109/ACCESS.2019.2940620

20. Chen J, Gu Y, Cai S, Chen H, Chen J. A novel test

case prioritization approach for black‐box testing

based on K‐medoids clustering. J. Softw.: Evol.

Process. 2023 Mar 31; e2565.

https://doi.org/10.1002/smr.2565

21. Mukherjee R, Patnaik KS. A survey on different

approaches for software test case prioritization. J.

King Saud Univ. - Comput. Inf. Sci. .2021 Nov

1;33(9):1041-54.

https://doi.org/10.1016/j.jksuci.2018.09.005

22. Zhou ZQ, Liu C, Chen TY, Tse TH, Susilo W.

Beating random test case prioritization. IEEE Trans.

Reliab. . 2020 Jun 16;70(2):654-75.

https://doi.org/10.1109/TR.2020.2979815

23. Lu C, Zhong J, Xue Y, Feng L, Zhang J. Ant colony

system with sorting-based local search for coverage-

based test case prioritization. IEEE Trans. Reliab..

2019 Aug 9;69(3):1004-20.

https://doi.org/10.1109/TR.2019.2930358

24. Mahdieh M, Mirian-Hosseinabadi SH, Mahdieh M.

Test case prioritization using test case diversification

and fault-proneness estimations. Autom. Softw. Eng.

.2022 Nov;29(2):50. https://doi.org/10.1007/s10515-

022-00344-y

25. Ganjkhani E, Afsharchi M. An effective test case

prioritization by combination of strategies. SN Appl.

Sci. .2019 Sep; 1:1-4. https://doi.org/10.1007/s42452-

019-1076-1

26. Chiang CL, Huang CY, Chiu CY, Chen KW, Lee

CH. Analysis and assessment of weighted

combinatorial criterion for test suite reduction. Qual.

Reliab. Eng. Int.. 2022 Feb;38(1):358-88.

https://doi.org/10.1002/qre.2984

27. Mondal S, Nasre R. Mahtab: Phase-wise acceleration

of regression testing for C. J. Syst. Softw.. 2019 Dec

1; 158:110403.

https://doi.org/10.1016/j.jss.2019.110403

28. Nithya TM, Chitra S. Soft computing-based semi-

automated test case selection using gradient-based

techniques. Soft Comput.. 2020 Sep;24(17):12981-7.

https://doi.org/10.1007/s00500-020-04719-9

29. Jatana N, Suri B. Particle swarm and genetic

algorithm applied to mutation testing for test data

generation: a comparative evaluation. J. King Saud

Univ. - Comput. Inf. Sci.. 2020 May 1;32(4):514-21.

https://doi.org/10.1016/j.jksuci.2019.05.004

30. Qureshi N, Mukhija MK, Kumar S. RAFI: Parallel

Dynamic Test-suite Reduction for Software. New

Front. Commun. Intell. Syst, SCRS, India. 2021:165-

76. https://doi.org/10.52458/978-81-95502-00-4-20

31. Wang R, Li Z, Jiang S, Tao C. Regression test case

prioritization based on fixed size candidate set ART

algorithm. J. Softw. Eng. Knowl. Eng.. 2020

Mar;30(03):291-320.

https://doi.org/10.1142/s0218194020500138

32. Rothermel G, Untch RH, Chu C, Harrold MJ.

Prioritizing test cases for regression testing. IEEE

Trans. Softw. Eng.. 2001 Oct;27(10):929-48.

https://doi.org/10.1109/32.962562

33. Khatibsyarbini M, Isa MA, Jawawi DN, Shafie ML,

Wan-Kadir WM, Hamed HN, Suffian MD. Trend

application of machine learning in test case

prioritization: A review on techniques. IEEE Access.

2021 Dec 14;9:166262-82.

https://doi.org/10.1109/ACCESS.2021.3135508

34. Yan R, Chen Y, Gao H, Yan J. Test case

prioritization with neuron valuation based pattern.

Sci. Comput. Program.. 2022 Mar 1; 215:102761.

https://doi.org/10.1016/j.scico.2021.102761

35. Huang Y, Shu T, Ding Z. A learn-to-rank method for

model-based regression test case prioritization. IEEE

Access. 2021 Jan 20; 9:16365-82.

https://doi.org/10.1109/ACCESS.2021.3053163

36. Laaber C, Gall HC, Leitner P. Applying test case

prioritization to software microbenchmarks.

Empir. Softw. Eng.. 2021 Nov;26(6):133.

https://doi.org/10.1007/s10664-021-10037-x

https://doi.org/10.21123/bsj.2024.9604
https://doi.org/10.1109/ACCESS.2019.2940620
https://doi.org/10.1002/smr.2565
https://doi.org/10.1016/j.jksuci.2018.09.005
https://doi.org/10.1109/TR.2020.2979815
https://doi.org/10.1109/TR.2019.2930358
https://doi.org/10.1007/s10515-022-00344-y
https://doi.org/10.1007/s10515-022-00344-y
https://doi.org/10.1007/s42452-019-1076-1
https://doi.org/10.1007/s42452-019-1076-1
https://doi.org/10.1002/qre.2984
https://doi.org/10.1016/j.jss.2019.110403
https://doi.org/10.1007/s00500-020-04719-9
https://doi.org/10.1016/j.jksuci.2019.05.004
https://doi.org/10.52458/978-81-95502-00-4-20
https://doi.org/10.1142/s0218194020500138
https://doi.org/10.1109/32.962562
https://doi.org/10.1109/ACCESS.2021.3135508
https://doi.org/10.1016/j.scico.2021.102761
https://doi.org/10.1109/ACCESS.2021.3053163
https://doi.org/10.1007/s10664-021-10037-x

Page | 621

2024, 21(2 Special Issue): 0609-0621

https://doi.org/10.21123/bsj.2024.9604

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

دراسة استكشافية لتقنيات تحديد أولويات حالة الاختبار القائمة على التاريخ على مجموعات

 بيانات مختلفة

سيد محمد جنيد حسن
1،2

دايانغ ن.أ. جواوي،
1

جوانا أحمد،
1

1
 .كلية الحاسبات، الجامعة التكنولوجية الماليزية، جوهور باهرو، ماليزيا

2
 .، كويتا، باكستانFICT ،BUITEMSقسم تكنولوجيا المعلومات،

 ةالخلاص

 TCPأسلوباً لترتيب جميع حالات الاختبار المتاحة. يمكن لتقنيات TCPفي اختبار الانحدار، يعد تحديد أولويات حالة الاختبار

 . APFDتحسين أداء الكشف عن الأخطاء والذي يتم قياسه بمتوسط النسبة المئوية لاكتشاف الأخطاء

التي تأخذ في الاعتبار تاريخ البيانات السابقة لتحديد أولويات حالات الاختبار. تعتبر TCPالمستند إلى التاريخ أحد تقنيات TCPيعد

ومع ذلك، لم يتم استكشاف هذه .TCPمسألة تخصيص الأولوية المتساوية لحالات الاختبار مشكلة شائعة بالنسبة لمعظم تقنيات

المستندة إلى التاريخ. لحل هذه المشكلة في اختبار الانحدار، يلجأ معظم الباحثين إلى الفرز العشوائي لحالات TCPالمشكلة في تقنيات

الاختبار. تهدف هذه الدراسة إلى تنفيذ تقنيات برنامج التعاون الفني القائمة على التاريخ والمنتشرة في الأدبيات تحت سقف واحد.

الأولوية المتساوية في تقنيات برنامج التعاون الفني المستندة إلى التاريخ. الهدف الثالث هو استكشاف الهدف الثاني هو دراسة مشكلة

القائمة على التاريخ. تم جمع مجموعات البيانات من السجلات TCPالفرز العشوائي كحل لمشكلة الأولوية المتساوية في تقنيات

المستندة إلى التاريخ على مجموعات بيانات مختلفة. TCPة والحديثة. تم تطبيق تقنيات التاريخية لحالات الاختبار من المصادر التقليدي

المستندة إلى التاريخ بحثاً عن مشكلة الأولوية المتساوية. ومن ثم تم استخدام الفرز العشوائي كحل لمشكلة TCPتم فحص تقنيات

التنفيذ. تشير النتائج إلى أن التقنيات المبنية على التاريخ تعاني ووقت APFDتساوي الأولوية. وأخيرا، تم تفصيل النتائج من حيث

 . TCPأيضًا من مشكلة الأولوية المتساوية مثل الأنواع الأخرى من تقنيات

إلى ثانياً، لا يؤدي الفرز العشوائي إلى نتائج مثالية أثناء محاولة حل مشكلة الأولوية المتساوية في برنامج التعاون الفني المستند

القائمة على التاريخ عند استخدامها لحل مشكلة ذات TCPالتاريخ. علاوة على ذلك، يؤدي الفرز العشوائي إلى تدهور نتائج تقنيات

أولوية متساوية. ينبغي للمرء اللجوء إلى الفرز العشوائي في حالة عدم وجود حل آخر. يتطلب قرار اختيار الحل الأفضل تحليل التكلفة

 .مراعاة السياق والحل قيد النظر والعائد مع

متوسط النسبة المئوية للخطأ المكتشف، الأولوية المتساوية، بناءً على التاريخ، عشوائي، اختبار الانحدار، تحديد الكلمات المفتاحية:

 .أولويات حالة الاختبار

https://doi.org/10.21123/bsj.2024.9604

