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Introduction 

The concept of domination by Berge has inspired 

researchers which has led to many invariants of 

domination. A collection of wide varieties of 

domination can be studied in the books1-4. 'Eccentric 

domination in graphs' was introduced by 

Janakiraman et al5  . A. Alwardi et al6 presented 

injective domination of graphs. Different types of 

domination7,8 were also developed. Complementary 

nil eccentric domination was introduced by   

Bhanumathi and   Senthil9, and equal eccentric 

domination and accurate eccentric domination were 

introduced by   Mohamed Ismayil and Riyaz Ur 

Rehman  10,11. Different types of eccentric 

domination were also developed13-18. Motivated by 

these research works the concept of injective 

eccentric domination is introduced for simple, 
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least one vertex in 𝐷. The eccentricity 𝑒(𝑣) of 𝑣 is the distance to a vertex farthest from 𝑣. Thus 

𝑒(𝑣) = max⁡{𝑑(𝑢, 𝑣): 𝑢 ∈ 𝑉}. For a vertex 𝑣, each vertex at a distance 𝑒(𝑣) from 𝑣 is an eccentric 

vertex. The eccentric set of a vertex 𝑣 is defined as 𝐸(𝑣) = {𝑢 ∈ 𝑉(𝐺): 𝑑(𝑢, 𝑣) = 𝑒(𝑣)}. Let 𝑆 ⊆

𝑉(𝐺), then 𝑆 is known as an eccentric point set of 𝐺 if for every 𝑣 ∈ 𝑉 − 𝑆, 𝑆 has at least one vertex 𝑢 

such that 𝑢 ∈ 𝐸(𝑣). A dominating set 𝑆 is called an eccentric dominating set if it is also an eccentric 

point set. In this article the concept of injective eccentric domination is introduced for simple, 

connected and undirected graphs. An eccentric dominating set 𝑆 is called an injective eccentric 

dominating set if for every vertex 𝑣 ∈ 𝑉 − 𝑆 there exists a vertex 𝑢 ∈ 𝑆 such that |𝛤(𝑣, 𝑢)| ≥ 1 where 

𝛤(𝑣, 𝑢) is the set of vertices different from 𝑣 and 𝑢, that are adjacent to both 𝑣 and 𝑢. Theorems to 

determine the exact injective eccentric domination number for the basic class of graphs are stated and 

proved. Nordhaus-Gaddum results are proposed. The injective eccentric dominating set, injective 

eccentric domination number 𝛾𝑖𝑛𝑒𝑑(𝐺), upper injective eccentric dominating set and upper injective 

eccentric domination number Γ𝑖𝑛𝑒𝑑(𝐺) for different standard graphs are tabulated.  

Keywords: Common neighborhood, Domination, Eccentricity, Injective eccentric domination, Injective 

eccentric domination number. 

https://doi.org/10.21123/bsj.2024.9659
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0007-6473-6294
mailto:fouzanriyaz@gmail.com
https://orcid.org/0000-0002-2960-0398
mailto:amismayil1973@yahoo.co.in


 

Page | 2692  

2024, 21(8): 2691-2700 

https://doi.org/10.21123/bsj.2024.9659  

P-ISSN: 2078-8665 - E-ISSN: 2411-7986 
 

Baghdad Science Journal 

connected, and undirected graphs. The concept of 

injective eccentric domination is introduced. 

Theorems related to injective eccentric domination 

are discussed. Propositions for any arbitrary graphs 

are stated. The injective eccentric dominating set, 

𝛾𝑖𝑛𝑒𝑑(𝐺), upper injective eccentric dominating set 

and Γ𝑖𝑛𝑒𝑑(𝐺) for different standard graphs are 

tabulated. The minimum degree and the maximum 

degree among the vertices of 𝐺 are denoted by 𝛿(𝐺) 

and Δ(𝐺) respectively. Refer to the book 'Graph 

Theory' by F Harary12 for undefined terminologies.  

 

Injective Eccentric Domination in Graphs 

In this section, injective eccentric dominating sets 

and their numbers are defined. Theorems related to 

injective eccentric domination of families of graphs 

such as complete, star, path, wheel, and cycle 

graphs are discussed. The injective eccentric 

dominating set, injective eccentric domination 

number 𝛾𝑖𝑛𝑒𝑑(𝐺), upper injective eccentric 

dominating set and upper injective eccentric 

domination number Γ𝑖𝑛𝑒𝑑(𝐺) for different standard 

graphs are given in Table 1. 

 

Definition 1: An eccentric dominating set (ED-set) 

𝑆 is called an injective eccentric dominating set 

(INED-set) if for every vertex of 𝑣 ∈ ⁡𝑉 − 𝑆 there 

exists a vertex 𝑢 ∈ 𝑆 such that |𝛤(𝑣, 𝑢)| ≥ 1 where 

𝛤(𝑣, 𝑢) is the set of vertices different from 𝑣 and 𝑢, 

that are adjacent to both 𝑣 and 𝑢. 

Definition 2: An injective eccentric dominating set 

(INED-set) 𝑆 is called a minimal INED-set if no 

proper subset of 𝑆 is an INED-set. 

Definition 3: The INED-number 𝛾𝑖𝑛𝑒𝑑(𝐺) of a 

graph, 𝐺 is the minimum cardinality among the 

minimal INED-sets of 𝐺. 

Definition 4: The upper INED-number 𝛤𝑖𝑛𝑒𝑑(𝐺) of 

a graph, 𝐺 is the maximum cardinality among the 

minimal INED-sets of 𝐺.  

Example 1: Consider the graph 𝐺 given in Fig 1, 

the graph 𝐺 consists of 7 vertices and 7 edges. 

 

 

Figure 1. A graph G of order and size 7. 

Here the dominating set is {℘3, ℘6}. 

The ED set is {℘2, ℘4, ℘5}. 

The INED set is {℘1, ℘2, ℘4, ℘5}, therefore 

𝛾𝑖𝑛𝑒𝑑(𝐺) = 4.  

The upper INED set is {℘1, ℘2, ℘3, ℘5, ℘6, ℘7}, 
therefore 𝛤𝑖𝑛𝑒𝑑(𝐺) = 6. 
 

Observation 1: For any graph 𝐺 = (𝑉, 𝐸), 
|𝑉(𝐺)| = 𝑛 and |𝐸(𝐺)| = 𝑞, 

1. 𝛾(𝐺) ≤ 𝛾𝑒𝑑(𝐺) ≤ 𝛾𝑖𝑛𝑒𝑑(𝐺) ≤ 𝛤𝑖𝑛𝑒𝑑(𝐺). 
2. 𝛾𝑖𝑛𝑒𝑑(𝐺) < 𝑛 and 𝛤𝑖𝑛𝑒𝑑(𝐺) < 𝑛.   

3. 𝛤𝑖𝑛𝑒𝑑(𝐺) + 1 ≤ 𝑛. 

4. If 𝐺 is a star graph (𝐺 = 𝑆𝑛) then 

(a) 𝑑𝑖𝑎𝑚(𝑆𝑛) = 𝛾𝑖𝑛𝑒𝑑(𝑆𝑛), 
(b) 𝛾𝑒𝑑(𝑆𝑛) = 𝛾𝑖𝑛𝑒𝑑(𝑆𝑛) = 2. 

Remark 1: Any graph with 2 vertices does not have 

an INED-set ie, 𝛾𝑖𝑛𝑒𝑑(𝐾𝑛) = 0 where |𝐺| ≤ 2. 

Since |𝛤(℘𝑖, ℘𝑗)| = 0⁡∀⁡℘𝑖, ℘𝑗 ∈ 𝐺. In this paper, 

graphs of order greater than or equal to 3 are 

considered. 

Theorem 1: For a complete graph 𝐾𝑛, where 𝑛 ≥

3, 𝛾𝑖𝑛𝑒𝑑(𝐾𝑛) = 1. 

Proof: Let 𝐾𝑛 be a complete graph, then ∀⁡℘𝑖 ∈

𝑉(𝐾𝑛), deg(℘𝑖) = 𝑛 − 1. Therefore, every single 

vertex forms a dominating set, say 𝐷 = {℘𝑖}. Since 

deg(℘𝑖) = 𝑛 − 1, 𝑒(℘𝑖) = 1 and 𝐸(℘𝑖) =

𝑉(𝐾𝑛) − {℘𝑖}, then 𝐷 = {℘𝑖} forms an eccentric 

dominating set since ∀⁡℘𝑗 ∈ 𝑉(𝐾𝑛) − 𝐷, 𝐸(℘𝑗) =

℘𝑖. Now, ∀⁡℘𝑗 ∈ 𝑉(𝐾𝑛) − 𝐷 there exists ℘𝑖 ∈ 𝐷 

such that the common neighbor |𝛤(℘𝑖, ℘𝑗)| = 𝑛 −

2 > 1. Therefore, 𝐷 becomes an INED-set and 

𝛾𝑖𝑛𝑒𝑑(𝐾𝑛) = 1⁡∀⁡𝑛 ≥ 3.  

Observation 2: For a complete graph 𝐾𝑛, 𝛿 = ∆=

(𝑛 − 1) then 𝛾(𝐾𝑛) = 𝛾𝑒𝑑(𝐾𝑛) = 𝛾𝑖𝑛𝑒𝑑(𝐾𝑛) = 1. 

Theorem 2: For star graph 𝑆𝑛⁡∀⁡𝑛 ≥ 3, 

𝛾𝑖𝑛𝑒𝑑(𝑆𝑛) = 2. 

https://doi.org/10.21123/bsj.2024.9659
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Proof: Let 𝑉(𝑆𝑛) = {℘1, ℘2, … ,℘𝑐 , … ,℘𝑛}. Let 

℘1 be the central vertex and all the other vertices 

are pendant vertices. deg(℘1) = 𝑛 − 1 and 

deg(℘𝑖) = 1, 𝑖 = 2,3, …𝑛 where ℘𝑖 is any pendant 

vertex. 𝐷 = {℘1} is the only dominating set of 

cardinality 1. But 𝐷 = {℘1} is not an ED-set. 

𝑒(℘1) = 1, 𝐸(℘1) = 𝑉(𝑆𝑛) − {℘1}, 𝑒(℘𝑖) = 2, 

𝑖 = 2,3, …𝑛 and 𝐸(℘𝑖) = 𝑉(𝑆𝑛) − {℘1, ℘𝑗}, 𝑖 ≠ 𝑗. 

Since every pendant vertex is an eccentric vertex of 

each other. A set 𝐷′ = {℘1, ℘𝑖}, 𝑖 ≠ 1 forms an 

ED-set, and for every ℘𝑗 ∈ 𝑉(𝑆𝑛) = 𝐷′ there exists 

℘𝑖 ∈ 𝐷′ such that 𝐸(℘𝑗) = ℘𝑖 and ℘1 dominates 

all other vertices. Then for every ℘𝑗 ∈ 𝑉(𝑆𝑛) − 𝐷′ 

there exists ℘𝑖 ∈ 𝐷′ such that |𝛤(℘𝑖, ℘𝑗)| = 1. The 

set 𝐷′ becomes INED-set and therefore 𝛾𝑖𝑛𝑒𝑑(𝑆𝑛) =

2⁡∀⁡𝑛 ≥ 3. 

Theorem 3: For a path graph 𝑃𝑛 where 𝑛 > 3, 

𝛾𝑖𝑛𝑒𝑑(𝑃𝑛)

=

{
 
 

 
 (

𝑛

3
) + 2, 𝑓𝑜𝑟⁡𝑛 = 3𝑘, 𝑤ℎ𝑒𝑟𝑒⁡𝑘 > 1

(
𝑛 − 1

3
) + 1, 𝑓𝑜𝑟⁡𝑛 = 3𝑘 + 1,𝑤ℎ𝑒𝑟𝑒⁡𝑘 = 1,2,…

(
𝑛 − 2

3
) + 2, 𝑓𝑜𝑟⁡𝑛 = 3𝑘 + 2,𝑤ℎ𝑒𝑟𝑒⁡𝑘 = 1,2,…

 

Proof: Let 𝑃𝑛 be the path graph with 𝑛 vertices. 

Case (i): For 𝑛 = 3𝑘 where 𝑘 > 1, the path graphs 

are of the form 𝑃6, 𝑃9, 𝑃12, … , 𝑃3𝑘. Let 𝐷 =

{℘2, ℘5, ℘8, ℘11, … ,℘3𝑘−1} be one of the minimal 

dominating sets of 𝑃3𝑘 then 𝛾(𝐺) = (
𝑛

3
), but 𝐷 is 

not an ED-set. The set {℘1, ℘3𝑘} is an eccentric 

point set of 𝐺. Make the set 𝐷 as 

{℘1, ℘4, ℘7, … ,℘3𝑘−2, ℘3𝑘} is a minimum ED-set 

with (
𝑛

3
) + 1 cardinality say 𝐷′. The set 𝐷′ is not an 

injective dominating set because |𝛤(℘3𝑘−1, ℘𝑖)| =

∅, ℘𝑖 ∈ 𝐷 and ℘3𝑘−1 ∈ 𝑉(𝑃3𝑘) − 𝐷. Now add the 

vertex ℘3𝑘−1 in 𝐷′, then the set 𝐷′′ = 𝐷′ ∪

{℘3𝑘−1} is an INED-set with (
𝑛

3
) + 2 vertices. 

Hence, 𝛾𝑖𝑛𝑒𝑑(𝑃3𝑘) = (
𝑛

3
) + 2. 

Case (ii): For 𝑛 = 3𝑘 + 1 where 𝑘 = 1,2,… the 

path graphs are of the form 𝑃4, 𝑃7, 𝑃10, … , 𝑃3𝑘+1. 

Let 𝐷 = {℘1, ℘4, ℘7, … ,℘3𝑘+1} be one of the 

minimal dominating set of 𝑃3𝑘+1, then 𝛾(𝑃3𝑘+1) =

(
𝑛−1

3
) + 1. Since both the pendant vertices are in 

the set 𝐷 therefore 𝐷 is an ED-set. The same ED-set 

𝐷 forms an INED-set since for every ℘𝑖 ∈
𝑉(𝑃3𝑘+1) − 𝐷 there exists ℘𝑖 ∈ 𝐷 such that 

𝑑(℘𝑖, ℘𝑗) = 2, then |𝛤(℘𝑖, ℘𝑗)| = 1. Therefore 

𝛾𝑖𝑛𝑒𝑑(𝑃3𝑘+1) = (
𝑛−1

3
) + 1.  

Case (iii): For 𝑛 = 3𝑘 + 2, the path graphs are of 

the form 𝑃5, 𝑃8, 𝑃11, …𝑃3𝑘+2. Let 𝐷 =

{℘2, ℘5, ℘8, …℘3𝑘+2} be one of the minimal 

dominating set of 𝑃3𝑘+2, then 𝛾(𝑃3𝑘+2) = (
𝑛−2

3
) +

1 but 𝐷 is not an ED-set. Let 𝐷′ = 𝐷 ∪

{℘1, ℘3𝑘+2}, this set is an ED-set, and for every 

℘𝑖 ∈ 𝑉(𝑃3𝑘+2) − 𝐷′ there exists ℘𝑗 ∈ 𝐷′ such that 

|𝛤(℘𝑖, ℘𝑗)| = 1 which satisfies the condition of an 

INED-set. Hence 𝛾𝑖𝑛𝑒𝑑(𝑃3𝑘+2) = (
𝑛−2

3
) + 2. 

Lemma 1: For a path 𝑃3, 𝛾𝑖𝑛𝑒𝑑(𝑃3) = 2. 

Proof: For 𝑃3, 𝑉(𝑃3) = {℘1, ℘2, ℘3} then 

|𝛤(℘1, ℘3)| = 1. ℘2 is the only common neighbor 

of ℘1 and ℘3. Therefore 𝐷1 = {℘1, ℘2} and 𝐷2 =

{℘2, ℘3} forms an INED-set. Hence 𝛾𝑖𝑛𝑒𝑑(𝑃3) = 2. 

Observation 3: For the path graphs 

𝑃4, 𝑃7, 𝑃10, …𝑃3𝑘+1 = 𝑃𝑛, the composition of an 

INED-set 𝐷 = {℘1, ℘𝑎, ℘𝑏 , ℘𝑐 , …℘3𝑘+1 = ℘𝑛} 
where 1 < 𝑎 < 𝑏 < 𝑐 < ⋯ < 3𝑘 + 1 = 𝑛 whose 

cardinality is (
𝑛−1

3
) + 1 will be 𝑑(℘1, ℘𝑎) =

𝑑(℘𝑎, ℘𝑏) = 𝑑(℘𝑏 , ℘𝑐) = ⋯ =
𝑑(℘3𝑘−2, ℘3𝑘+1) = 3. 

Theorem 4: For the wheel graph 𝑊𝑛 where 𝑛 ≥ 4,  

𝛾𝑖𝑛𝑒𝑑(𝑊𝑛) = {

1, 𝑖𝑓⁡𝑛 = 4
2, 𝑖𝑓⁡𝑛 = 5,7
3, 𝑖𝑓⁡𝑛 = 6, 𝑛 ≥ 8

 

Proof: Let 𝑊𝑛 be the wheel graph with 𝑛 vertices. 

Case (i): For 𝑛 = 4: Since the wheel 𝑊4 is a 

complete graph 𝐾4. From Theorem-1, 𝛾𝑖𝑛𝑒𝑑(𝑊4) =

1. 

Case (ii): Subcase-1: For 𝑛 = 5, let 𝑉(𝑊5) =

{℘1, ℘2, ℘3, ℘4, ℘5} where ℘1 being the central 

vertex deg(℘1) = 4 = ∆(𝑊4) and deg(℘𝑖) = 3 =

𝛿(𝑊4)⁡∀⁡℘𝑖 ∈ 𝑉(𝑊4) − {℘1}. {℘1} is the only 

dominating set but not eccentric dominating. Any 

https://doi.org/10.21123/bsj.2024.9659
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two non-central vertices that are adjacent form the 

eccentric dominating set. The central vertex ℘1 is 

the common neighbor of any two adjacent vertices 

that are non-central vertices. Therefore the two non-

central vertices form an eccentric dominating and 

also an injective dominating set. Hence any two 

non-central adjacent vertices form an INED-set. 

Therefore 𝛾𝑖𝑛𝑒𝑑(𝑊5) = 2. 

Subcase-2: For 𝑛 = 7, let 𝑉(𝑊7) =

{℘1, ℘2, ℘3, ℘4, ℘5, ℘6, ℘7} where ℘1 being the 

central vertex deg(℘1) = 6 = ∆(𝑊7). Let 𝐷 =

{℘𝑖, ℘𝑗} be the diagonally opposite non-central 

vertex pair form the eccentric dominating set. Then 

𝑊7 contains exactly 3 pairs of such vertices. 

|𝛤(℘𝑖, ℘𝑘)| = |𝛤(℘𝑗, ℘𝑘)| = 1⁡∀⁡℘𝑘 ∈ 𝑉(𝑊7) −

𝐷, (℘𝑖, ℘𝑘), (℘𝑗, ℘𝑘) ∈ 𝐸(𝑊7) and |𝛤(℘𝑖, ℘𝑝)| =

|𝛤(℘𝑗, ℘𝑝)| = 2⁡∀⁡℘𝑝 ∈ 𝑉(𝑊7) − 𝐷 and 

(℘𝑖, ℘𝑝), (℘𝑗, ℘𝑝) ∉ 𝐸(𝑊7). Therefore 𝐷 =

{℘𝑖, ℘𝑗} forms the INED-set of 𝑊7. 

Case (iii): For 𝑊_6 and 𝑊_𝑛 when 𝑛 ≥ 8, there 

exists no ED-set whose cardinality is 2. Therefore 

the set 𝐷 = {℘𝑖, ℘𝑗, ℘𝑐} forms a dominating set 

where ℘𝑐 is the central vertex and ℘𝑖, ℘𝑗 are 

adjacent non-central vertices. Then |𝛤(℘𝑖, ℘𝑘)| =

|𝛤(℘𝑗, ℘𝑘)| = 1 if ℘𝑘 ∈ 𝑉 − 𝐷 is adjacent to ℘𝑖 or 

℘𝑗. Hence, |𝛤(℘𝑖, ℘𝑘)| = |𝛤(℘𝑗, ℘𝑘)| =

|𝛤(℘𝑐 , ℘𝑘)| = 2 if ℘𝑘 is not adjacent to ℘𝑖 or ℘𝑗. 

Therefore 𝛾𝑖𝑛𝑒𝑑(𝑊6) = 𝛾𝑖𝑛𝑒𝑑(𝑊𝑛) = 3 for all 𝑛 ≥

8.  

Theorem 5: For a cycle graph 𝐶𝑛 where 𝑛 is even  

𝛾𝑖𝑛𝑒𝑑(𝐶𝑛) = {
4, 𝑓𝑜𝑟⁡𝑛 = 6
𝑛

2
, 𝑖𝑓⁡𝑛 ≠ 6

 

Proof: Case (i): For a cycle graph 𝐶6, every cycle 

graph with an even number of vertices is a self-

centered graph ie, the eccentricity of any vertex is 

unique. Then for any vertex ℘𝑖 ∈ 𝑉(𝐶6) the 

diagonally opposite vertex will be the eccentric 

vertex of ℘𝑖. Let 𝐷 = {℘𝑝, ℘𝑞} be a minimum 

dominating set with (
𝑛

3
) =

6

3
= 2 vertices such that 

the distance between the vertices in the set 𝐷 is 3 ie, 

𝑑(℘𝑝, ℘𝑞) = 3 but 𝐷 is not an ED-set. Let 𝐷′ be a 

set consisting of 3 vertices such that the distance 

between the vertices in the set 𝐷′ is 2 ie, 𝐷′ =

{℘𝑝, ℘𝑞 , ℘𝑟} such that 𝑑(℘𝑝, ℘𝑞) = 𝑑(℘𝑞 , ℘𝑟) =

𝑑(℘𝑟, ℘𝑝) = 2 thus the set 𝐷′ is an ED-set but not 

an INED-set. Let 𝐷′′ = 𝐷′ ∪ {℘𝑠} where ℘𝑠 ∈ 𝑉 −
𝐷′, then for every vertex ℘𝑖 ∈ 𝑉 − 𝐷′′ there exists 

℘𝑝 ∈ 𝐷′′ such that |𝛤(℘𝑖, ℘𝑝)| = 1. Hence a set 

𝐷′′ of cardinality 4 forms an INED-set. Thus 

𝛾𝑖𝑛𝑒𝑑(𝐶6) = 4. 

Case (ii): For cycle graphs 𝐶𝑛 where 𝑛 is even and 

𝑛 ≠ 6. Let 𝐷 be a minimum dominating set 

containing |𝐷| = (
𝑛

2
) vertices, here 𝐷 must not 

contain two vertices that are diagonally opposite to 

each other. Since the diagonally opposite vertices 

are the eccentric vertices to each other. Take a set 𝐷 

such that the distance between the vertices ℘𝑖, ℘𝑗 ∈

𝐷 is either 1 or 2 or 3 ie, 𝑑(℘𝑖 , ℘𝑗) = 1 or 2 or 3 

forms an ED-set since for every vertex ℘𝑝 ∈

𝑉(𝐶𝑛) − 𝐷 there exists 𝐸(℘𝑝) ∈ 𝐷. 𝐷 also forms 

an INED-set as |𝛤(℘𝑝, ℘𝑖)| = 1 for every ℘𝑝 ∈

𝑉(𝐶𝑛) − 𝐷, ℘𝑖 ∈ 𝐷. Therefore 𝛾𝑖𝑛𝑒𝑑(𝐶𝑛) = (
𝑛

2
).  

Theorem 6: For a cycle graph 𝐶𝑛 where 𝑛 is odd 

𝛾𝑖𝑛𝑒𝑑(𝐶𝑛)

=

{
 
 

 
 (

𝑛

3
) , 𝑤ℎ𝑒𝑟𝑒⁡𝑛 = 3𝑘, 𝑘⁡𝑖𝑠⁡𝑜𝑑𝑑

(
𝑛 + 1

3
) + 1, 𝑤ℎ𝑒𝑟𝑒⁡𝑛 = 3𝑘 + 2, 𝑘⁡𝑖𝑠⁡𝑜𝑑𝑑

(
𝑛 − 1

3
) + 2, 𝑤ℎ𝑒𝑟𝑒⁡𝑛 = 3𝑘 + 1, 𝑘⁡𝑖𝑠⁡𝑒𝑣𝑒𝑛

 

Proof: For cycle graph 𝐶𝑛 where 𝑛 is odd, 

Case (i): For cycle graph 𝐶3𝑘, 𝑘 = 1,3,5,… then 𝐶3𝑘 

will be of the form 𝐶3, 𝐶9, 𝐶15, … Every vertex ℘𝑖 ∈

𝑉(𝐶3𝑘) has two vertices adjacent to it, Δ(𝐶𝑛) =

𝛿(𝐶𝑛) = deg(℘𝑖) = 2⁡∀⁡℘𝑖 ∈ 𝑉(𝐶3𝑘). Every 

vertex ℘𝑖 can dominate itself and the vertices 

adjacent to it, therefore (
𝑛

3
) vertices are enough to 

dominate the cycle graph 𝐶3𝑘. Then the set 𝐷 =

{℘𝑖, ℘𝑗, ℘𝑘 , …℘𝑟, ℘𝑠} such that 𝑑(℘𝑖, ℘𝑗) =

𝑑(℘𝑗, ℘𝑘) = ⋯ = 𝑑(℘𝑟, ℘𝑠) = 3 forms a 

dominating set of cardinality (
𝑛

3
). Here every vertex 

has two eccentric vertices. Therefore for every 

vertex ℘𝑝 ∈ 𝑉 − 𝐷 there exists ℘𝑖 ∈ 𝐷 such that 

𝐸(℘𝑝) = ℘𝑖. Then 𝐷 becomes an eccentric 
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dominating set whose cardinality is (
𝑛

3
). Further, 𝐷 

also forms an INED-set since for every ℘𝑝 ∈

𝑉(𝐶3𝑘) − 𝐷 there exists ℘𝑖 ∈ 𝐷 such that 

|𝛤(℘𝑖, ℘𝑝)| = 1. Hence (
𝑛

3
) vertices form the 

INED-set of 𝐶3𝑘. Therefore 𝛾𝑖𝑛𝑒𝑑(𝐶3𝑘) = (
𝑛

3
). 

Case (ii): For cycle graph 𝐶3𝑘+2 where 𝑘 is odd, 

then the cycle graphs are of the form 𝐶5, 𝐶11, 𝐶17, … 

Let 𝐷 = {℘𝑝, ℘𝑞 , ℘𝑟, … } be a minimum 

dominating set with cardinality (
𝑛+1

3
) but 𝐷 is not 

an ED-set. Let 𝐷′ = 𝐷 ∪ {℘𝑠}, ℘𝑠 ∈ 𝑉 − 𝐷 such 

that 𝐷′ contains 2 pairs of vertices where 

𝑑(℘𝑝, ℘𝑞) = 𝑑(℘𝑟, ℘𝑠) = 1, then |𝐷′| = (
𝑛+1

3
) +

1 then for every vertex ℘𝑖 ∈ 𝑉 − 𝐷′ there exists 

℘𝑝 ∈ 𝐷′ such that 𝐸(℘𝑖) ∈ 𝐷′ and |𝛤(℘𝑖, ℘𝑝)| =

1. Therefore 𝛾𝑖𝑛𝑒𝑑(𝐶3𝑘+2) = (
𝑛+1

3
) + 1. 

Case (iii): For cycle graph 𝐶3𝑘+1 where 𝑘 is even, 

the cycle graphs are of the form 𝐶7, 𝐶13, …𝐶3𝑘+1. 

Every vertex ℘𝑖 ∈ 𝑉(𝐶3𝑘+1) has two eccentric 

vertices. Let 𝐷 = {℘𝑖, ℘𝑗, … } be a minimum 

dominating set with cardinality (
𝑛−1

3
) + 1 but not 

an INED-set since there exists at least one vertex 

℘𝑝 ∈ 𝑉 − 𝐷 which does not have an eccentric 

vertex ℘𝑖 ∈ 𝐷 or |𝛤(℘𝑖, ℘𝑝)| ≱ 1. Let 𝐷′ = 𝐷 ∪

{℘𝑘} then 𝐷′ = {℘𝑖, ℘𝑗, ℘𝑘 , … } whose cardinality 

is (
𝑛−1

3
) + 2 forms an INED-set since for every 

℘𝑝 ∈ 𝑉 − 𝐷′, 𝐸(℘𝑝) lies in 𝐷′ and |𝛤(℘𝑝, ℘𝑖)| =

1, where ℘𝑖 ∈ 𝐷′ and ℘𝑝 ∈ 𝑉 − 𝐷
′. Hence 

𝛾𝑖𝑛𝑒𝑑(𝐶3𝑘+1) = (
𝑛−1

3
) + 2. 

Theorem 7: For any graph 𝐺, 
𝑛

1+Δ(𝐺)
≤ 𝛾𝑖𝑛𝑒𝑑(𝐺). 

Proof: Let 𝐷 be the INED-set of 𝐺. |𝐷| = 𝛾𝑖𝑛𝑒𝑑(𝐺) 

where 𝑉(𝐺) = 𝑛 and 
𝑛

1+Δ(𝐺)
=

|𝑉(𝐺)|

1+Δ(𝐺)
. Since 

|𝑉(𝐺)|

1+Δ(𝐺)
 

either 𝑉(𝐺) = 1 + Δ(𝐺) or 𝑉(𝐺) > 1 + Δ(𝐺). 

Case(i): If 𝑉(𝐺) = 1 + Δ(𝐺). Then 
|𝑉(𝐺)|

1+Δ(𝐺)
= 1. 

Therefore 
𝑛

1+Δ(𝐺)
≤ 𝛾𝑖𝑛𝑒𝑑. This case is true and 

holds for a complete graph 𝐾𝑛. 

Case(ii): If 𝑉(𝐺) > 1 + Δ(𝐺). Suppose Δ(𝐺) = 1 

then Δ(𝐺) = 𝛿(𝐺) which is not possible, by 

|Γ(𝑢, 𝑣)| ≥ 1. Therefore |𝑉(𝐺)| ≥ 3. Then if 

Δ(𝐺) = 2, 
|𝑉(𝐺)|

1+Δ(𝐺)
≤ 2 for 3 ≤ 𝑛 ≤ 6. Similarly, if 

the value of Δ(𝐺) > 2. Then 
|𝑉(𝐺)|

1+Δ(𝐺)
=

𝑛

1+Δ(𝐺)
≤

𝛾𝑖𝑛𝑒𝑑. Since 
|𝑉(𝐺)|

1+Δ(𝐺)
 decreases as Δ(𝐺) increases for 

any value of 𝑉(𝐺). Therefore 
𝑛

1+Δ(𝐺)
≤ 𝛾𝑖𝑛𝑒𝑑(𝐺). 

Theorem 8: If a graph contains one or more 

pendant vertices then every minimum INED-set 

contains at least one pendant vertex. 

Proof: The pendant vertex 𝑣 has a degree one and 

𝛿(𝐺) = deg(𝑣) = 1. Since 𝑣 is adjacent to only one 

vertex it is not directly connected to other vertices 

which increases the distance between 𝑣 and its non-

adjacent vertices. Other vertices can find the 

shortest path between them through the immediate 

neighbours which shortens the path between them. 

Therefore the pendant vertex will be one among 

those vertices that are farthest from every vertex. 

The pendant vertex is included in the periphery. The 

pendant vertex 𝑣 forms the eccentric vertex of most 

of the vertices. Since an INED-set is also an 

eccentric dominating set and for many non-pendant 

vertices 𝑢𝑖, 𝐸(𝑢𝑖) = 𝑣. Therefore an INED-set 

contains 𝑣, since for some 𝑢𝑖 ∈ 𝑉 − 𝑆, ∃ a pendant 

vertex 𝑣 ∈ 𝑆 such that 𝐸(𝑢𝑖) = 𝑣 and |Γ(𝑢𝑖, 𝑣)| ≥

1. 

Proposition 1: For any graph 𝐺, 

(i) 𝛾𝑖𝑛𝑒𝑑(𝐺) + 2 ≤ 𝑛, (Except for 𝑃3 

graph), 

(ii) If 𝑟𝑎𝑑(𝐺) > 2, 𝛾𝑖𝑛𝑒𝑑(𝐺) ≤ 𝑛 − Δ, 

(iii) If 𝑟𝑎𝑑(𝐺) = 2 and 𝑑𝑖𝑎𝑚(𝐺) = 3 then 

𝛾𝑖𝑛𝑒𝑑(𝐺) ≤ Δ, 

(iv) If 𝑑𝑖𝑎𝑚(𝐺) = 2 then 𝛾𝑖𝑛𝑒𝑑(𝐺) =
𝛾𝑒𝑑(𝐺), 

(v) 𝛾𝑖𝑛𝑒𝑑(𝐺) ≤ ⌈
𝑛+1

2
⌉, 

(vi) 𝛾𝑖𝑛𝑒𝑑(𝐺) ≤ 𝑛 − 𝛿 + 1, 

(vii) 𝛾𝑖𝑛𝑒𝑑(𝐺) ≤ ⌈
𝑛+3−𝛿

2
⌉, 

(viii) 𝛾𝑖𝑛𝑒𝑑(𝐺) ≥ ⌈
𝑑𝑖𝑎𝑚+1

3
⌉, 

(ix) 𝛾𝑖𝑛𝑒𝑑(𝐺) ≤ ⌊
2𝑛

3
⌋, 

(x) 𝛾𝑖𝑛𝑒𝑑(𝐺) ≤ ⌈
𝑛+2−(𝛿−1)

Δ

𝛿

2
⌉, 

(xi) 𝛾𝑖𝑛𝑒𝑑(𝐺) ≤ ⌈𝑛 + 1 − √2𝑞⌉, 
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(xii) With 𝑛 ≥ 3 then 1 ≤ 𝛾𝑖𝑛𝑒𝑑(𝐺) ≤ (𝑛 −
1). 
 

Proposition 2: For any wheel graph 𝑊𝑛, 

𝛾𝑖𝑛𝑒𝑑(𝑊𝑛) ≤ ⌊
𝑛

2
⌋. 

Theorem 8: For complete graph 𝛿 = Δ and 

𝛾𝑖𝑛𝑒𝑑(𝐾𝑛) = Γ𝑖𝑛𝑒𝑑(𝐾𝑛) then 𝑛 = 𝛿 + 𝛾𝑖𝑛𝑒𝑑(𝐾𝑛). 

Proof: For any complete graph, a vertex 𝑢 ∈ 𝑉(𝐾𝑛) 
is adjacent to every other vertex in the graph ie, 

𝑑𝑒𝑔𝑟𝑒𝑒(𝑢) = 𝑛 − 1, where |𝑉(𝐾𝑛)| = 𝑛. Since 

every vertex is adjacent to every other vertex of the 

graph, therefore the degree of every vertex is the 

same ie, 𝛿 = (𝑛 − 1) = Δ. From the Theorem 1, 

𝛾𝑖𝑛𝑒𝑑(𝐾𝑛) = 1. Hence 𝑛 = 𝛿 + 𝛾𝑖𝑛𝑒𝑑(𝐾𝑛). 

Table 1. The injective eccentric dominating set, 𝜸𝒊𝒏𝒆𝒅(𝑮), upper injective eccentric dominating set and 

𝚪𝒊𝒏𝒆𝒅(𝑮) of standard graphs are tabulated. 

Graph Figure Minimum 

INED set 

𝜸𝒊𝒏𝒆𝒅(𝑮) Upper INED set 𝚪𝒊𝒏𝒆𝒅(𝑮) 

Diamond 

 

{℘1, ℘2}, 
{℘1, ℘3}, 
{℘2, ℘3}, 
{℘2, ℘4}, 
{℘3, ℘4}. 

2 {℘1, ℘2},  
{℘1, ℘3},  
{℘2, ℘3},  
{℘2, ℘4},  
{℘3, ℘4}. 

2 

Tetrahedral 

 

{℘1}, 
{℘2}, 
{℘3}, 
{℘4}. 

1 {℘1}, 
{℘2}, 
{℘3}, 
{℘4}. 

1 

Claw 

 

{℘1, ℘3}, 
{℘2, ℘3}, 
{℘3, ℘4}. 

2 {℘1, ℘3}, 
{℘2, ℘3}, 
{℘3, ℘4}. 

2 

Paw 

 

{℘1, ℘3}, 
{℘2, ℘3}, 
{℘3, ℘4}. 

2 {℘1, ℘2, ℘4}. 3 

Bull 

 

{℘1, ℘2, ℘3}, 
{℘1, ℘2, ℘4}, 
{℘1, ℘2, ℘5}, 
{℘1, ℘3, ℘4}, 
{℘2, ℘3, ℘4}. 

 

3 {℘1, ℘2, ℘3}, 
{℘1, ℘2, ℘4}, 
{℘1, ℘2, ℘5}, 
{℘1, ℘3, ℘4}, 
{℘2, ℘3, ℘4}. 

3 

Butterfly 

 

{℘1, ℘2}, 
{℘1, ℘5}, 
{℘2, ℘4}, 
{℘4, ℘5}. 

 

 

2 {℘1, ℘3, ℘4}, 
{℘2, ℘3, ℘4}, 
{℘2, ℘3, ℘5}. 

3 

Banner 

 

{℘2, ℘5}. 
 

2 {℘1, ℘2, ℘3}, 
{℘1, ℘3, ℘5}, 
{℘2, ℘3, ℘4}, 
{℘3, ℘4, ℘5}. 

3 
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Fork 

 

{℘1, ℘2, ℘5}, 
{℘1, ℘4, ℘5}, 
{℘2, ℘3, ℘5}, 
{℘2, ℘4, ℘5}. 

3 {℘1, ℘2, ℘3, ℘4}. 4 

(3,2)Tadpole 

 

{℘1, ℘4}, 
{℘4, ℘5}. 

 

2 {℘1, ℘2, ℘3, ℘5}. 4 

Kite 

 

{℘2, ℘4}. 
 

2 {℘1, ℘2, ℘3, ℘5}. 4 

(4,1)-

Lollipop 

 

{℘1, ℘4}, 
{℘2, ℘4}, 
{℘3, ℘4}, 
{℘4, ℘5}. 

 

2 {℘1, ℘2, ℘3, ℘5}. 4 

House 

 

{℘2, ℘4}, 
{℘3, ℘5}. 

2 {℘1, ℘2, ℘3}, 
{℘1, ℘4, ℘5}. 

 

3 

House X 

 

{℘1, ℘2}, 
{℘1, ℘3}, 
{℘1, ℘4}, 
{℘1, ℘5}. 

 

2 {℘2, ℘3, ℘4, ℘5}. 4 

Gem 

 

{℘1, ℘2}, 
{℘3, ℘4}. 

 

2 {℘1, ℘3, ℘5}, 
{℘2, ℘4, ℘5}. 

3 

Dart 

 

{℘2, ℘3}, 
{℘2, ℘4}. 

 

2 {℘1, ℘3, ℘4, ℘5}. 4 

Cricket 

 

{℘3, ℘4}, 
{℘4, ℘5}. 

 

2 {℘1, ℘2, ℘3, ℘5}. 4 

Pentatope 

 

{℘1}, 
{℘2}, 
{℘3}, 
{℘4}, 
{℘5}. 

1 {℘1}, 
{℘2}, 
{℘3}, 
{℘4}, 
{℘5}. 

1 
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Johnson 

solid 

skeleton 12 

 

{℘1, ℘2}, 
{℘1, ℘3}, 
{℘1, ℘4}, 
{℘1, ℘5}, 
{℘2, ℘3}, 
{℘3, ℘4}, 
{℘3, ℘5}. 

2 {℘1, ℘2}, 
{℘1, ℘3}, 
{℘1, ℘4}, 
{℘1, ℘5}, 
{℘2, ℘3}, 
{℘3, ℘4}, 
{℘3, ℘5}. 

 

2 

Cross 

 

{℘1, ℘3, ℘6}, 
{℘2, ℘3, ℘6}, 
{℘3, ℘4, ℘6}, 
{℘3, ℘5, ℘6}. 

 

3 {℘1, ℘2, ℘3, ℘4, ℘5}. 5 

Net 

 

{℘1, ℘2, ℘6}. 
 

3 {℘1, ℘2, ℘3, ℘5}, 
{℘1, ℘2, ℘4, ℘5}, 
{℘1, ℘3, ℘4, ℘5}, 
{℘1, ℘3, ℘4, ℘6}, 
{℘1, ℘4, ℘5, ℘6}, 
{℘2, ℘3, ℘4, ℘5}, 
{℘2, ℘3, ℘4, ℘6}, 
{℘2, ℘3, ℘5, ℘6}, 
{℘3, ℘4, ℘5, ℘6}. 

4 

Fish 

 

{℘2, ℘3}, 
{℘3, ℘5}. 

 

2 {℘1, ℘2, ℘4, ℘5, ℘6}. 5 

A 

 

{℘1, ℘5, ℘6}, 
{℘2, ℘5, ℘6}. 

 

3 {℘1, ℘2, ℘3, ℘4}, 
{℘1, ℘2, ℘3, ℘6}, 
{℘1, ℘2, ℘4, ℘5}, 
{℘1, ℘3, ℘4, ℘5}, 
{℘2, ℘3, ℘4, ℘6}, 
{℘3, ℘4, ℘5, ℘6}. 

 

4 

R 

 

{℘1, ℘2, ℘3}, 
{℘2, ℘3, ℘4}, 
{℘2, ℘3, ℘5}, 
{℘2, ℘3, ℘6}, 
{℘2, ℘5, ℘6}. 

 

3 {℘1, ℘3, ℘5, ℘6}, 
{℘3, ℘4, ℘5, ℘6}. 

 

4 

4-

polynomial 

 

{℘3, ℘4}. 
 

2 {℘1, ℘2, ℘4, ℘5}, 
{℘2, ℘3, ℘5, ℘6}, 

 

4 

(2,3)-King 

 

{℘1, ℘3}, 
{℘1, ℘6}, 
{℘3, ℘4}, 
{℘4, ℘6}. 

 

2 {℘1, ℘2, ℘4}, 
{℘1, ℘4, ℘5}, 
{℘2, ℘3, ℘6}, 
{℘3, ℘5, ℘6}. 

 

3 
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Antenna 

 

{℘1, ℘2, ℘5}, 
{℘1, ℘2, ℘6}, 
{℘1, ℘3, ℘5}, 
{℘1, ℘4, ℘6}, 
{℘1, ℘5, ℘6}. 

 

3 {℘1, ℘2, ℘3, ℘4}, 
{℘2, ℘3, ℘5, ℘6}, 
{℘2, ℘4, ℘5, ℘6}. 

 

4 

3-prism 

 

{℘1, ℘2}, 
{℘3, ℘5}, 
{℘4, ℘6}. 

 

2 {℘1, ℘5, ℘6}, 
{℘2, ℘3, ℘4}. 

 

3 

Octahedral 

 

{℘1, ℘2, ℘3}, 
{℘1, ℘2, ℘5}, 
{℘1, ℘3, ℘6}, 
{℘1, ℘5, ℘6}, 
{℘2, ℘3, ℘4}, 
{℘2, ℘4, ℘5}, 
{℘3, ℘4, ℘6}, 
{℘4, ℘5, ℘6}. 

3 {℘1, ℘2, ℘3}, 
{℘1, ℘2, ℘5}, 
{℘1, ℘3, ℘6}, 
{℘1, ℘5, ℘6}, 
{℘2, ℘3, ℘4}, 
{℘2, ℘4, ℘5}, 
{℘3, ℘4, ℘6}, 
{℘4, ℘5, ℘6}. 

3 

 

Conclusion 

In this paper, the concept of injective eccentric 

domination of a graph is introduced. The injective 

eccentric domination of some families of graphs is 

calculated. Interesting Nordhaus-Gaddum results 

are proposed. The injective eccentric dominating 

set, injective eccentric domination number 

𝛾𝑖𝑛𝑒𝑑(𝐺), upper injective eccentric dominating set 

and upper injective eccentric domination number 

Γ𝑖𝑛𝑒𝑑(𝐺) for different standard graphs are tabulated. 
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 حقن الهيمنة غريب الأطوار في الرسوم البيانية

 رياض الرحمن أ*، أ محمد إسماعيل 

 ، تاميل نادو، الهند.620020 –قسم الرياضيات، كلية جمال محمد )التابعة لجامعة بهاراتيداسان(، تيروتشيرابالي  

 

 

 ةالخلاص

هي  Vمن  Dلقد ألهم مفهوم الهيمنة الباحثين الذين ساهموا في تأليف مؤلفات واسعة حول الهيمنة. يقال أن المجموعة الفرعية 

هو المسافة إلى ⁡𝑣لـ   𝑒(𝑣) . الانحراف المركزيDمجاورة لقمة واحدة على الأقل في  Dمجموعة مهيمنة، إذا كان كل قمة ليست في 

𝑒(𝑣) ي فانلتال. وبا𝑣الرأس الأبعد من  = max⁡{𝑑(𝑢, 𝑣): 𝑢 ∈ 𝑉}   بالنسبة للقمة .𝑣 كل قمة على مسافة ،𝑒(𝑣)  من𝑣⁡ هي قمة

𝑆 على فرض  E(v)={u∈V(G):d(u,v)=e(v)} على أنه 𝑣غريبة الأطوار. يتم تعريف المجموعة اللامركزية للقمة  ⊆ 𝑉(𝐺) ،

𝑣 إذا كان لكل 𝐺تعُرف بمجموعة نقاط غريب الأطوار من  𝑆إذن  ∈ 𝑉 − 𝑆  ،𝑆  لديه قمة واحدة على الأقل𝑢  حيث𝑢 ∈ 𝐸(𝑣) .

بالمجموعة المهيمنة اللامركزية إذا كانت أيضًا مجموعة نقطية غريبة الأطوار. في هذه المقالة يتم تقديم  𝑆تسمى المجموعة المهيمنة 

مفهوم الهيمنة اللامركزية عن طريق الحقن للرسوم البيانية البسيطة والمتصلة وغير الموجهة. تسُمى المجموعة المسيطرة اللامركزية 

𝑆 كان لكل رأس  بالمجموعة المهيمنة اللامركزية إذا𝑣 ∈ 𝑉 − 𝑆  رأس𝑢 ∈ 𝑆  بحيث تكون Γ(v,u)|≥11  حيثΓ(v,u) هي

. تم ذكر وإثبات النظريات لتحديد رقم التحكم اللامركزي الدقيق uو  vمن ، المجاورتين لكل uو  vعن مجموعة الرؤوس المختلفة 

يتم جدولة مجموعة السيطرة اللامركزية عن طريق . Nordhaus-Gaddum تم اقتراح نتائج كما للفئة الأساسية من الرسوم البيانية.

، ومجموعة الهيمنة اللامركزية عن طريق الحقن العليا ورقم الهيمنة 𝛾𝑖𝑛𝑒𝑑(𝐺)الحقن، ورقم الهيمنة اللامركزية عن طريق الحقن 

  .  للرسوم البيانية القياسية المختلفة  Γ𝑖𝑛𝑒𝑑(𝐺) طريق الحقن اللامركزية عن
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