Um-Salama Science Journal

Vol.6(1)2009

Ikbal S. Naji*

The structure and optical properties of CdSe:Cu Thin Films

Eman M.N.Al-Fawadi* Tariq. J. Alwan**

Date of acceptance 3/6/2008

Abstract:

A polycrystalline CdSe thin films doped with (5wt%) of Cu was fabricated using vacuum evaporation technique in the substrate temperature range(T_s=RT-250)°C on glass substrates of the thickness(0.8μm). The structure of these films are determined by X-ray diffraction (XRD). The X-ray diffraction studies shows that the structure is polycrystalline with hexagonal structure, and there are strong peaks at the direction (200) at (T_s=RT-150) °C, while at higher substrate temperature(T_s=150-250) °C the structure is single crystal. The optical properties as a function of T_s were studied. The absorption, transmission, and reflection has been studied, The optical energy gap (Eg)increases with increase of substrate temperature from (1.65-1.84)eV due to improvement in the structure. The amorphousity of the films decreases with increasing T_s. The films have direct energy gap and the absorption edge was shift slightly towards smaller wavelength for CdSe:Cu thin film with increase of substrate temperature it was found that the absorption coefficient was decreased with increasing of substrate temperature due to increases the value of(E_g). The CdSe:Cu films showed absorption coefficient in the range (0.94 x10⁴-0.42x10⁴)cm⁻¹at T_s=RT-250 °C. Also the density of state decreases with increasing of substrate temperatures from (0.20-0.07)eV, it is possibly due to the recrystallization by the heating substrate temperatures.. Also the extinction coefficient, refractive index and dielectric constant have been studied.

Key Words: CdSe thin films, optical properties, structure properties poly crystalline CdSe.

1-Introduction

II-VI Of the compound semiconductors, CdSe is a promising candidate because of its applications in photoconductive thin films transistor electrography and lasers[1]. It has a direct intrinsic band gap of 1.74eV .The II-VI compound semiconductors thin films give photoconductivity only if it is doped and crystalline[2]. The electrical properties of these films depends mainly on the impurity concentration and sensitization of the films. Extensive studies have been carried out on the photoconducting

properties of copper doped CdSe films[3]. The latter authors found that absorption coefficient was increased with an increase of Cu impurity concentration and absorption edge was shifted towards longer wavelength for Cu doped film with heat treatment (350°C). An increase in the photosensitivity of pure CdSe under 600W/m² illumination was reported by Nair[4]. Al-Ani et al [5] has studied the optical properties of CdSe at different substrate temperatures, they found that the energy gap was increased as the

^{*} Physics Dept./ Science College/ University of Baghdad

^{*} Physics Dept,/ College of Education/ Al-Mustansiriya University

substrate temperature increased. Also the same authors[6] have prepared CdSe:Cu by vacuum evaporation technique. And they found that the energy gap was decreased as the copper content increased. Mahmoud et al[7] and Narayaandass et al[8] have prepared CdSe film by hot wall deposition technique onto glass substrate, they are studying the X-ray diffraction and found that the films exhibit preferential orientation along the (103) direction and changes to the (002) direction as the thickness increases. The optical absorption coefficient exceeds 5X104cm-1 for all wavelength less than 0.7 µm [5,6]. In this paper we reported the optical properties of CdSe:Cu thin films at different substrate temperatures.

2-Experimental

Films of Cu doped CdSe (0.8µm thick) were prepared by vacuum evaporation technique (BALZERS) in substrate temperature range(T_s=RT-250)°C on glass substrates. Pure CdSe mixed with solution of CuCl(5wt%) and dried were taken as source materials. structures of these films are determined by X-ray (XRD). The optical measurements were made at room temperatures(RT) using Perkina Elmer Spectrophotometer.

The absorption coefficient (α) , refractive index(n) and extinction coefficient (k), has been calculated from the equations respectively [9]:

$$\alpha = 2.303 \text{ A/d} - - - - (1)$$

$$n = \left(\frac{4R}{(R-1)^2} - k^2\right)^{1/2} - \frac{(R+1)}{(R-1)} - \dots - (2)$$

$$k=\alpha\lambda/4\pi$$
----(3)

where R is the reflectance, and the real and imaginary part of dielectric constant (ε_I and ε_2)respectively can be calculated by using equations[9]:

$$\varepsilon_1 = n^2 - k^2$$
 (real part)----(4)

$$\varepsilon_2 = 2nk$$
 (imaginary part)----(5)

The doping of CdSe films showed similar characteristic to CdSe single crystal doped with impurity atoms.

3- Results and Discussions

3-1 Structure properties

The X-ray diffraction for CdSe:Cu thin film show polycrystalline structure and there are strong peak at reflecting from(002) plane and small peaks at (110) and (102) plane as presented in Fig.(1) with hexagonal structure at(T_s =RT-1250)°C and at (T_s =150-250) °C the structure are single crystal with only reflecting surface at (002) and this is an agreement with [10].

It is shown that the film at (200-250)°C have better structure than the CdSe:Cu films which prepared at RT due to improvement in films structure by the increasing of substrate heating compared with films at RT. The light intensity increases with increasing substrate temperatures from (T_s=RT-250)°C and decreases for the other peaks due to improvement in the structure as shown in Fig.(1) and this is agreement with [11], they found that the films are polycrystalline and have a hexagonal structure and oriented with the (002)planes.

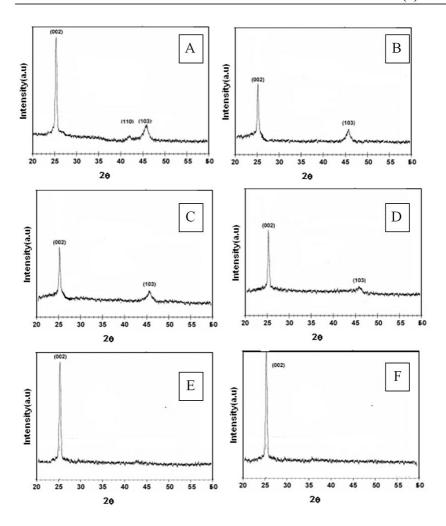


Fig.(1)X-ray diffraction for CdSe:Cu thin film for a- CdSe:Cu(5w_t%)RT, CdSe:Cu (5w_t%) at b- T_s =50 °C, c- T_s =100 °C, d- T_s =150 °C, e- T_s =200 °C, f- T_s =250 °C

3-2 Optical Properties

Fig.(2a,b and c) shows the transmition , absorption and reflection spectrum for CdSe:Cu(5wt%) thin films at the substrate temperature range(T_s =27, 100, 150, 200, 250°C for wavelength between (400-1200)nm. It was shown that the absorption edge for CdSe:Cu(5wt%) thin films is shifted towards smaller wavelength with the

increase of T_s and this is due to improvement the structure by heating. The absorption, transmission, and reflection has been studied, also energy gap and optical constant has been determined. In general, our results showed nearly a decrease in transmission spectra with increasing substrate temperatures. The observed decrease in the optical transmission spectra can be related to the

improvement in the crystalinty of the films, a similar decrease in the optical transmission spectra was observed by Nair et al[4] in the chemically deposited CdSe thin films. The band gap energy should decrease with annealing if the effect was indeed a quantum size effect Gray et al[11].

The absorption edge shifting to smaller wavelength and this may be attributed to the improvement in the structure and decreases the localized state in the band gab. Also we are studied the spectrum of absorptance and reflectance as in Fig.(2b&c). It is obvious that it behavior is opposite to that of transmittance spectrum.

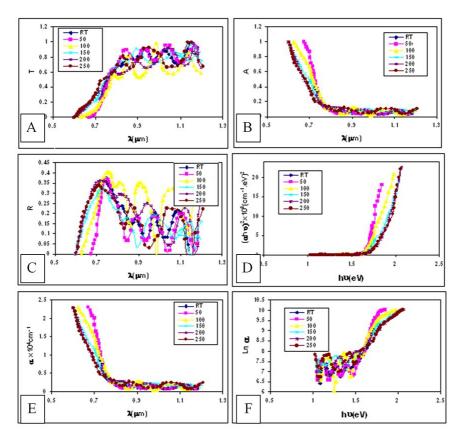


Fig.(2)The T, A, R, $(\alpha h v)^{1/2}$, α and $\ln \alpha$ for CdSe:Cu thin films at different T_s.

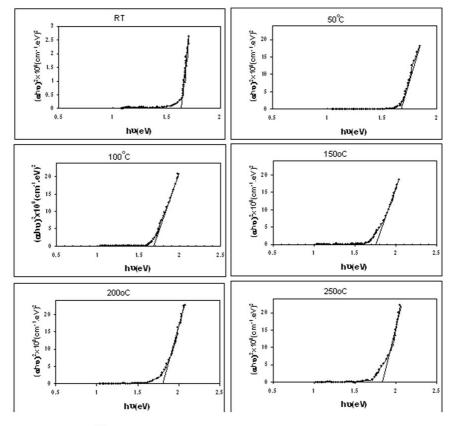


Fig.(3)The $\alpha h \nu$)^{1/2} as a function of $h \nu$ for CdSe:Cu thin films at different T_s.

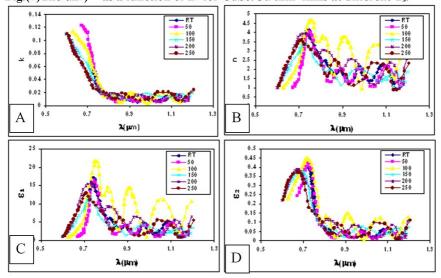


Fig.(4)The k,n , ε_1 & ε_2 as a function of λ for CdSe:Cu thin films at different T_s .

In the region of the absorption edge the energy band gap $E_{\rm g}$ is determine. Since CdSe:Cu is a direct band gap semiconductor, this agreement with[11] , the absorption coefficient near the band edge is related to $E_{\rm g}$ by[3]:

$$(\alpha h v)^2 = B (h v - E_g) - - - - (6)$$

The linear intercept of plot of $(\alpha h \nu)^2$ versus hu yields values of (1.65, 1.68, 1.7, 1.75, 1.8, 1.84) eV for CdSe: Cu thin films prepared at (T_s=RT, 50, 100, 150, 200,250°C) as shown in Fig.(2d)and Fig.(3) which agree well with result of [1-13], they found that the Eg ranged between (1.05-1.75)eV with increased T_s from RT to 250°C. Also these value of Eg are agreement with Ichimura et al[14], they obtained E_g about (1.84-1.9) eV before heating and (1.75-1.85)eV after heating. Also Shreekanthan et al[12] have found that the value of Eg equals to 1.88eV for CdSe which prepared by hot wall method at room temperatures, And Philip et al[15] found that the E_g shifts towards higher wavelength, these are attributed results to improvement in the structure of the films by the increases of substrate temperatures.

where B in the eq.(6) is constant represent amorphousity factors. Which has been obtained from the root square of the straight line slope in the Fig.(3). From this figure the value of B is increased with increasing substrate temperatures from (18.4-31.9) x10⁴eV^{1/2}/cm as shown in Table (1). which mean that the amorphousity decreases with increasing substrate temperatures due to the improvement in the structure[2].

Fig.(2e) shows the absorption coefficient (α) as a function of wavelength for CdSe:Cu at T_s =RT-250)°C respectively which calculated

from the equation(1). From this figure the value of α decreases with increasing substrate temperature from $0.94X10^4cm^{-1}$ to $0.42X10^4cm^{-1}$ for $(T_s=RT-250)^{\circ}C$,respectively.(see Table(1). This is related to the improvement in the structure by increasing T_s . This is an agreement with[10-13] which they found that α decreases with T_s .

At $1 < \alpha < 10^4$ cm⁻¹ the value of width of tails(ΔE_t) of localized state in the gap is obtained from Fig.(2f), where Ln α is plotted as a function of hv, in accordance with Urbach relation[9]:

$$\alpha = \alpha_0 \exp(hv/\Delta E_t)$$
----(7)

where α_o is constant. The value of ΔE_t extracted from the reciprocal slope of the linear part are equals to (0.2 0.17, 0.12, 0.12, 0.08, 0.07)eV for CdSe:Cu at ($T_s = RT$, 50, 100, 150, 200,250°C) respectively (see Table(1)), and this attributed to the decreasing of Cu concentration in the E_g by increasing T_s which lead to reduce the localized state in the E_g .

The value of extinction coefficient(k) which calculate from the equation(3) are shown in Table(1) and Fig.(4a). The behavior of k is nearly similar to corresponding the absorption coefficient. We can see from this figure that the value of k decreased by increasing T_s from (0.0447-0.0252)and this is due to the same reason which mention previously in α . Fig.(4b)represent the refractive index (n) of these films, it is decreases slightly with T_s due to decrease in the density of state as shown in Table(1). The values of the refractive index(n) which calculated from the equation(2) are equals to (4.018, 3.811, 3.833, 3.195, 3.190) for CdSe:Cu at $(T_s=RT, 50, 100, 150, 200, 250^{\circ}C)$ respectively (see Table(1)),Eya[16] found that the refractive index af this films which prepared by (CBD) has the value of 2.64, Fig(4c&e) and Table(1) show the variation of real and imaginary part of dielectric constant (ε_I and ε_2)respectively as a function of T_s which calculated from the equations(4 and 5). The behavior of ε_1 is similar to refractive index because

the smaller value of k^2 comparison of n^2 , while ϵ_1 is mainly depends on the k values, which are related to the variation of absorption coefficient. It is found that ϵ_1 and ϵ_2 decreases with increasing T_s . as shown in Table(1), and this is nearly agreement with[10].

Ta	E _g (eV)	BX10 ⁴ eV ^{1\2} /cm	$\Delta E_u eV$	α cm ⁻¹ x10 ⁴	n	k	ϵ_1	ε2
RT	1.65	18.4	0.20	0.940	4.018	0.0447	16.142	0.359
50	1.68	32.8	0.17	0.863	3.833	0.0507	14.520	0.386
100	1.70	25.3	0.12	1.010	3.811	0.5820	14.690	0.441
150	1.75	26.8	0.12	0.970	3.197	0.0550	10.980	0.333
200	1.80	28.2	0.08	0.620	3.195	0.0320	10.660	0.280
250	1.84	31.9	0.07	0.420	3.190	0.0252	10.220	0.160

4-Conclusion:

From this research it has been shown that:

Structural and optical properties of CdSe:Cu films prepared by vacuum evaporation technique on different substrate temperatures have been studied, the films at low substrate temperatures are polycrystalline with hexagonal structure and heating the films at high substrate temperatures improve the crystallinity of films.

Optical studies reveal that CdSe:Cu films has a direct band gap energy and the value of absorption coefficient decrease with increasing substrate temperatures and the value of energy gaps($E_{\rm g}$) increases with increasing of substrate temperatures. All the other optical constant are strongly influenced by the heating substrate

Refrences:

 Sathyalatha, K.C., Uthanna, S.M. and Jayarama, R.P., 1989, Electrical and Photoconducting Properties of Vacuum Evaporated Pure and Silver-Doped CdSe Film, Thin Solid Films, 174:233-238.

- Chopra K.L.(1969) ,"Thin Film Phenomena" , Ch.2 , Mc Graw- ill Book Co. , New York
- Al-Ani, S.K.J., Mohammed, H.H., and Al-Fawade, E.M., 2000, The Optoelectronic Properties of CdSe Photoconductive Detector, world Renewable Energy congress, VI Reading, U.K., 2026-2031.
- Nair, M.T.S., Nair, P.K., Zingaro, R.A. and Meyens, E.A, 1993, Enhancement of Photosensitivity in Chemically deposited CdSe ThinFilm By Air Annealing, J. Appl. Phys., 74:1879-1884.
- Al-Ani, S.K.J., Mohammed, H.H., and Al-Ani, R.S., 2000, Fabrication of CdSePhotoconductive Detector, Iraqi J. Sci, 41C(4):192-211.
- Al-Ani, S.K.J., Mohammed, H.H., and Al-Fawade, E.M., 2000, The Optoelectronic Properties of CdSe Photoconductive Detector, world Renewable Energy congress, VI Reading, U.K., 2026-2031.
- Mahmoud, A.H., 1990, Cadmium SelenideThin Films Grown by Vacuum Deposition Technique, Crys. Res. Technol, 25:1147.

- Narayandass, K. and Mangalaraj, D., 1998, Semiconducting science and technology, Electronic Journals, 641-46.
- Madan, A. and Shaw, M., 1986, The Physics and Applications of Amorphous Semiconductors, Academic Press, ed.Madan, In. New York.
- 10. E.M.N.Al-Fawade,2006, The Effect of Doping Ratio on the Optical Properties of CdSe Films,Um-Salma Science Journal,3(1):180-185.
- C.Baban, G.I.Rusu, P.Prepelite, 2005, On the Optical Properties of Polycrystalline CdSe Thin Films, Journal of Optoelectronics and Advanced Materials, 7(2):817-821.
- 12. hreekanthan, K.N., Regendra, B.V., Kasturi, V.B. and Shivakumar, G.K., 2003, Growth and characterization of semiconducting Cadmium

- Selenide films, Cryst.Res. Technol, 38(1):30-33/DOI.
- 13. Jeffery P., szabo and M.cocivera, 1987, Effect of annealing atmosphere on the properties of thin film CdSe, J. Appl. Phys., 61(10):4820.
- Ichimura, M., Sato, N., Nakeichi,
 A. and Arai, E., 2002, Properties of Photoconductivity Deposited CdSe, Phys. Stat.Sol. a, 193(1):132-138.
- Phillip, X. and Quentin, W., 1996, Band Structure of CdS and CdSe at High Pressure, Phys. Rev. B, 54(24):17585.
- 16. D.D.O.Eya, 2006, the Optical Properties of Cadmium Selenide CdSe Thin Films Prepared by CBD, The Pacific Journal of Science and Technology,7(1):64-68.

الخواص التركيبية والبصرية للأغشية الرقيقة CdSe:Cu

ايمان مزهر ناصر الفوادي* طارق جعفر علوان ** اقبال سهام ناجي *

- *قسم الفيزياء/ كلية العلوم/ جامعة بغداد
- ** قسم الفيزياء/ كلية التربية/ الجامعة المستنصرية

الخلاصة:

حضرت الأغشية الرقيقة CdSe:Cu المتعددة البلورات والمطعمة بالنحاس بنسبة (%10 إلى بنستعمال نقنية التيخير الفراغي بمدى درجة حرارة اساس %10 (XRD) على قواعد زجاجية. حدد تركيب تلك الاغشية بواسطة الفحص بالأشعة السينية (XRD) . بينت دراسات حيود الاشعة السينية بان التركيب يكون من النوع المتعدد البلورات السداسي, وهناك قمة قوية بالاتجاه (200) عند%20 (%30 مند) (%40 بينما عند درجات حرارة الأساس العالية %40 (%50) يتحول التركيب الى البلورة المفردة . درست الخصائص البصرية كدالة لدرجة حرارة الأساس من%50 (%60 ودرست النفاذية والأمتصاصية والأنعكاسية. فجوة الطاقة تزداد بزيادة درجة حرارة الأساس من%60 (%70 ودرست النفاذية والأمتصاصيقل بزيادة درجة حرارة الأساس من%70 (%40 الأمتصاص بأتجاه الأطوال الموجية القصيرة لأغشية مناشرة و تزاح حافة الأمتصاص بأتجاه الأطوال الموجية القصيرة لأغشية مناشرة و تزاح حافة الأمتصاص يقل بزيادة درجة حرارة الأساس من%10 (%10 (%10 معامل الأمتصاص يقل بزيادة درجة حرارة الأساس ...كنلك حرارة الأساس ...كنلك المعامل الخمود ومعامل الأنكسار وثوابت العزل كدالة لدرجة حرارة الأساس ...كنلك درس معامل الخمود ومعامل الأنكسار وثوابت العزل كدالة لدرجة حرارة الأساس ...

كلمات مفتاحية: أغشية CdSe الرقيقة والخصائص البصرية، الخصائص التركيبية CdSe المتعدد البلورات.