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Abstract

Data Driven Requirement Engineering (DDRE) represents a vision for a shift from the static traditional

methods of doing requirements engineering to dynamic data-driven user-centered methods. Data available
and the increasingly complex requirements of system software whose functions can adapt to changing
needs to gain the trust of its users, an approach is needed in a continuous software engineering process.
This need drives the emergence of new challenges in the discipline of requirements engineering to meet
the required changes. The problem in this study was the method in data discrepancies which resulted in
the needs elicitation process being hampered and in the end software development found discrepancies
and could not meet the needs of stakeholders and the goals of the organization. The research objectives
in this research to the process collected and integrating data from multiple sources and ensuring
interoperability. Conclusion in this research is determining is the clustering algorithm help the collection
data and elicitation process has a somewhat greater impact on the ratings provided by professionals for
pairs that belong to the same cluster. However, the influence of POS tagging on the ratings given by
professionals is relatively consistent for pairs within the same cluster and pairs in different clusters.

Keywords: DDRE, Data Source, Requirement Engineering, System Software, Elicitation Process.

Introduction

Organizations are closely related to the need for
information systems, adaptation of information
technology, and information systems are the main
drivers for organizations to develop their business 2.
Requirement engineering is important initial
processes when developing software for an
organization, including how data plays an important
role in requirement engineering?2.

Requirement engineering (RE) is a collection of
activities to identify and communicate the goals of
the system, specifically the software, and the context
in which the software will be used 3. RE is bridge
between the real-world needs of users, customers,
and other constituents affected by a software system,
and the capabilities and opportunities provided by
software-intensive technologies *°.

Page | 561


https://doi.org/10.21123/bsj.2024.9675
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-2105-0029
mailto:bernanda@graduate.utm.my
https://orcid.org/0000-0001-8300-8523
mailto:dayang@utm.my
https://orcid.org/0000-0002-5533-2171
mailto:shahliza@utm.my
https://orcid.org/0000-0003-3012-3020
mailto:fadikara@bundamulia.ac.id

2024, 21(2 Special Issue): 0561-0567
https://doi.org/10.21123/bsj.2024.9675
P-ISSN: 2078-8665 - E-ISSN: 2411-7986

S

Baghdad Science Journal

The initial process of RE development is very useful
for obtaining system functions that will be developed
in software 5. Software requirements engineering
activities must be able to run correctly, completely
and accurately so that the information system
developed does not become backward, over budget,
or even fails to be completed °. The quality of the
requirement engineering process is an important
factor that can cause errors in software engineering
projects ’.

Failures in system development are often caused by
misunderstandings that are misinterpreted when the
RE stage cannot meet user expectations. The better
the requirements specification given, the better the
software system developed 8. Therefore, a RE
process is needed that is able to solve these problems.
RE is often referred to as the most important phase
in software engineering because errors in this phase
are very expensive if not detected at a later stage °.

Currently, RE not only on key stakeholders but also
on large-scale data, which comes from a number of

Materials and Methods

Test the effectiveness of different concepts and
combinations of POS tagging and clustering
techniques in automatically managing large amounts
of user input. Ten participants, consisting of five
students and five lecturers, were asked to evaluate
pairs of existing feedback data **. The selected pairs
were designed to test all variables equally. The
participants' familiarity with the domain and their
level of interest were considered, and four
combinations of POS tagging were chosen for
testing. The supervised and unsupervised clustering
algorithms were used to partition the data after
extracting the POS tagging combinations, and the
performance differences between these approaches
were also examined 4 After the experiment,
participants were interviewed to gather their
motivations for choosing specific items. The

operations and customer feedback °. For example,
user reviews on mobile apps platform becomes an
important target of analysis, because it contains a lot
of information. However, data-driven requirements
technology is a new domain that must be
continuously researched and developed *.

According to the data, data management and
analytics will grow rapidly according to their role.
The compound annual growth rate is 21%, twice as
fast as the business software. As data grows rapidly,
decision makers and stakeholders are demanding
computerized support for their work by asking for
intelligent solutions that can analyze and visualize
their data to achieve their goals 2. To meet these
needs, it is necessary to enhance RE elicitation
process that utilizes available data as the main source
for determining software requirement °. This study
uses Natural Language Processing (NLP) combined
with the Kmeans and MeanShift algorithms to find
out whether there are significant differences in the
data used and in the end these data can be used in the
need elicitation process 2.

evaluation metrics focused on intra-cluster
relatedness, measuring the similarity of items within
the same cluster, and inter-cluster relatedness,
assessing the differences between items in different
clusters. These metrics were utilized to evaluate the
effectiveness of different NLP settings and
techniques in generating groupings °16,

In Fig. 1, the research used is university case studies
and will eventually produce a dashboard in the form
of the distribution of existing data sets. To achieve
this goal, a process is followed where 20 feedback
items are extracted from the dataset. These items are
then transformed using POS tagging, which involves
utilizing NLP tools and domain-specific dictionaries.
The POS tagging helps in identifying and
categorizing different parts of speech in the text.
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Figure 1. Component Diagram Architecture

After the text transformation, two clustering
algorithms, namely K-means and Meanshift, are
applied to assign the transformed text to cluster *'.
These clustering algorithms group similar feedback
items together based on their textual features®®,

In addition to clustering, topic modeling is also
performed to identify topics within each cluster.
Topic modeling helps in uncovering underlying

Results and Discussion

In Fig. 2, the overall evaluation of the pairs based
on the assessments from the test subjects, it is
observed that 48% of the pairs are rated as "Not at
all Associated.” When including the category of
"Somewhat Unrelated,” this percentage increases
to 68%, indicating a significant portion of the data
being considered as not associated based on
evaluating clustering algorithm. It is crucial to

themes or subjects that are prevalent within the
feedback data *°.

Overall, the analysis focuses on automatically
organizing the unstructured text data by applying
POS tagging, clustering algorithms (K-means and
MeanShift), and topic modeling 2°. These techniques
aim to provide insights into the structure and content
of the feedback data without relying on human-
generated classifications.

consider these findings since the effectiveness of
our metrics relies on accurately grouping or
separating the feedback items. The presence of a
substantial number of unrelated pairs affects the
results and may indicate that our grouping
approach is successful in identifying and handling
unrelated tickets, particularly when more than two
components of a pair are unrelated.
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Figure 2. Distribution of Ratings Across Data Set

The Wilcoxon Total Rating test was conducted on
the distribution of ratings, comparing pairs that were
in the same cluster versus pairs in different clusters.
The Wilcoxon Rank Sum Test results in N=639992,
W=397301, and a p-value of less than 2.2e-15,
indicating a statistically significant difference
between these two groups. This suggests that there is
a significant distinction between the ratings of paired
items within the same cluster and those in different
clusters.

Further analysis was performed by dividing the data
into pairs within the same cluster and pairs in
different clusters, and conducting the Wilcoxon
Rank Sum Test on the difference in ratings between
students and professionals. For pairs in the same
cluster, N=160931, W=86389, and the p-value is
0.06285. For pairs in different clusters, N=158531,
W=72621, and the p-value is 0.02135. The W-score
represents the sum of the ratings, indicating how
many ratings are larger in one population compared
to the other. Although no statistical significance was
found, it was observed that students and
professionals tended to agree more on ratings for
pairs within the same cluster and had more
disagreements on ratings for pairs in different
clusters.

Overall, these findings suggest a tendency for higher
agreement between students and professionals when

evaluating pairs within the same cluster and lower
agreement for pairs in different clusters, although the
differences did not reach statistical significance

In Fig.3, the lecturer rate tickets in the same cluster.
Three combinations the K-Means is related by more
than 51%, whereas Meanshift has only one
distribution which violates the 50%. However, all
distributions are tied between 42% and 56%. When
examining the results for lecturers the saw pairs
clustered in the same cluster and different clusters
separately, because interested in the performance of
the POS clustering and tagging algorithms regarding
ticket grouping and segregation.
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Figure 3. Distribution of Ratings Across Data Set
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In Fig.4, the distribution of pairs in a different cluster
is analyzed to evaluate the success of ticket
separation. A high proportion of unrelated pairs
indicates a successful distribution. The most
effective combination is the Meanshift algorithm
with the Verbs and Nouns feature set, achieving a
separation of unrelated tickets in 92% of cases.
Conversely, the worst performing combination is the
K-means algorithm with Named Entities, Nouns, and
Adjectives, achieving a separation of unrelated
tickets in only 80% of cases. Therefore, the
MeanShift algorithm with the Verbs and Nouns
combination is the most successful approach for
accurately separating tickets into different clusters.
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Figure 4. Lecturer For Pair in The Different
Cluster Rating

Conclusion

In the evaluation of the pairs based on test subjects'
assessments, it was found that a significant
percentage of the data, 68%, was considered
unrelated or not associated. This finding is important
as it affects the accuracy of the metrics used to group
or separate feedback items. A statistical test showed
a significant difference in ratings between pairs
within the same cluster and pairs in different clusters.
However, when comparing ratings given by students
and professionals, there was no statistical

The Wilcoxon Sum Rating Test was conducted
separately on pairs within the same cluster and pairs
in different clusters, considering the ratings given by
professionals and students. For pairs within the same
cluster, N=40159, W=20539, and the p-value is
0.6773. For pairs in different clusters, N=39759,
W=20135, and the p-value is 0.803. These results
suggest that the clustering algorithm has a slightly
more noticeable effect on the ratings given by
professionals when evaluating pairs within the same
cluster compared to pairs in different clusters. The
distribution of ratings appears to be less uniform in
the former category.

The Kruskal-Wallis test was performed to assess the
influence of the four distributions of POS tagging on
the ratings given by lecturers. The test was conducted
separately for pairs within the same cluster and pairs
in different clusters. For pairs within the same
cluster, the test yielded a chi-squared value of
2.6496, df=3, and a p-value of 0.4488.

The clustering algorithm appears to have a slightly
stronger influence on the ratings given by lecturers
for pairs within the same cluster, while the effect of
POS tagging on the ratings given by lecturers is
similar for pairs within the same cluster and pairs in
different clusters.

significance, but a tendency for higher agreement
within the same cluster and lower agreement in
different clusters was observed.

In line with the shift towards a data-centered
approach, there is a need for automated tools that can
process feedback. These tools could build on the
findings of this thesis, particularly in the area of
directed clustering, which focuses on words relevant
to requirements analysts in software development.
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