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Introduction 

Wireless sensor network (WSN) comprises a 

self-organizing distributed system composed of 

numerous small sensor nodes, each equipped with 

wireless communication and computational 

capabilities 
1
. These nodes gather various data types 

within the monitored region, such as sound and 

temperature. Subsequently, this data is transmitted 

to a central management center for in-depth 

statistical analysis and processing 
2
. The 

effectiveness of WSN heavily relies on their 

coverage, which plays an integral role in their 

overall performance. Consequently, addressing the 

coverage optimization challenge in WSN involves 

strategically deploying sensor nodes throughout the 

designated monitoring area while maintaining 

network connectivity 
3
. 

Hence, It has been a research focus to maximize 

coverage of the region with a small number of 

sensor nodes, and Swarm Intelligence (SI) 

Algorithms, which can find an approximate solution 

Abstract 

The issue of increasing the range covered by a wireless sensor network with restricted sensors is addressed 

utilizing improved CS employing the PSO algorithm and opposition-based learning (ICS-PSO-OBL). At 

first, the iteration is carried out by updating the old solution dimension by dimension to achieve 

independent updating across the dimensions in the high-dimensional optimization problem. The PSO 

operator is then incorporated to lessen the preference random walk stage's imbalance between exploration 

and exploitation ability. Exceptional individuals are selected from the population using OBL to boost the 

chance of finding the optimal solution based on the fitness value. The ICS-PSO-OBL is used to maximize 

coverage in WSN by converting regional monitoring into point monitoring utilizing the discretization 

method in WSN. In the experiments, the ICS-PSO-OBL with the standard CS and three CS variants 

(MACS, ICS-2, and ICS) are utilized to execute the simulation experiment under different numbers of 

nodes (20 and 30, respectively). The experimental results reveal that the optimized coverage of 

ICS-PSO-OBL is 18.36%, 7.894%, 15%, and 9.02% higher than that of standard CS, MACS, ICS-2, and 

ICS when the number of nodes is 20. Moreover, it is 16.94%, 9.61%, 12.27%, and 7.75% higher when the 

quantity of nodes is 30, the convergence speed of ICS-PSO-OBL, and the distribution of nodes is superior 

to others. 

Keywords: cuckoo search algorithm, dimension-by-dimension update, opposition-based learning, wireless 

sensor network, PSO operator.  

https://doi.org/10.21123/bsj.2024.9707
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0003-6977-9673
mailto:y_senyu@163.com
https://orcid.org/0009-0008-7629-868X
mailto:yhxiang@stu.jsu.edu.cn
https://orcid.org/0009-0009-6928-317X
mailto:kangdiwen@jsu.edu.cn
https://orcid.org/0000-0001-5779-7135
mailto:kqzhou@jsu.edu.cn


 

Page | 569  

2024, 21(2 Special Issue): 0568-0583 

https://doi.org/10.21123/bsj.2024.9707 

P-ISSN: 2078-8665 - E-ISSN: 2411-7986 
 

Baghdad Science Journal 

to the optimization problem in an acceptable time 
4
, 

provide a means to address the issue of WSN 

coverage optimization. Currently, SI has produced 

beneficial achievements in the area of WSN 

coverage optimization 
5
. Duan et al. used the 

sparrow search algorithm (SSA) to optimize 

network coverage. Compared to the standard SSA, 

the upgraded SSA balances network coverage, 

energy use, and coverage redundancy 
6
. As a way to 

tackle the Maximum Coverage Set Scheduling 

(MCSS) problem, Mottaki et al. suggested a hybrid 

approach by combining genetic algorithm (GA) and 

tabu search. Experiments reveal that the new 

algorithm is more effective in locating the nearly 

ideal scheduling coverage set 
7
. He et al. introduced 

a novel model for optimizing the coverage of WSN. 

This model elevates the improved marine predator 

algorithm's efficacy by amalgamating a 

multi-echelon stochastic leadership approach with a 

dynamically adjustable inertia weight strategy 
8
. 

There are various SI algorithms available for 

solving WSN coverage optimization problems. 

Musa et al. concludes his article by comparing the 

Cuckoo Search (CS) algorithm with various SI 

algorithms (e.g., GA, ACO, PSO, and so on), and 

concludes that CS performs better with respect to 

the relative ones 
9
.Therefore, it is a useful attempt to 

apply CS to the WSN coverage optimization 

problem. 

The CS, a relatively recent swarm intelligence 

optimization technique, has gained widespread 

popularity in various domains, its broad adoption 

can be attributed to its robust global search 

capabilities, limited control parameters, and high 

applicability 
10,11

. Scholars have made various 

improvements to the standard CS in terms of its 

parameter configuration and combining it with other 

algorithms in response to the problems of 

unbalanced exploration and exploitation capacity, 

readily prone to local optimal, and mutual 

interference between dimensions of overcoming 

challenges in high-dimensional optimization. Ye et 

al. proposed an innovative CS referred to as 

ICS-ABC-OBL. In this approach, they 

synergistically integrated an ABC algorithm with 

opposition-based learning (OBL), resulting in 

improved system performance and the effective 

mitigation of the early convergence issue 
12

. 

Nonlinear inertia weights and differential evolution 

(DE) are combined in Zhang et al.'s proposed 

improved CS (CSDE). The nonlinear inertia 

weights ensure that the algorithm makes it difficult 

to enter the local optimum, and the DE operator 

successfully enhances the information interchange 

between algorithm individuals. Through trials, the 

performance of CSDE is improved 
13

. Due to the 

results, Li et al.'s proposed improved cuckoo search 

method significantly increases the algorithm's 

convergence accuracy and speed. It is based on elite 

OBL and the golden sine operator 
14

. By making 

these changes, the conventional CS's shortcomings 

were improved and its ability to solve optimization 

issues will be enhanced, and all of them have 

achieved good results. Therefore, it is a valuable 

attempt to propose and apply an improved CS to 

WSN coverage optimization. 

This study of this paper could be separated into 

three phases to fulfill this goal. First, an improved 

CS using PSO operator and OBL, namely 

ICS-PSO-OBL, is used to balance exploration and 

exploitation capabilities and enhance the 

susceptibility to local optima and interference 

among dimensions. Then, the coverage of WSN is 

modeled by transforming the area into point 

monitoring using a discretization. Finally, in terms 

of performance validation, ICS-PSO-OBL is 

compared with CS and CS variants through 

simulation experiments when the number of nodes 

is 20 and 30, and the experiments show that 

ICS-PSO-OBL can be more effectively applied to 

the network coverage problem to improve the 

quality of network node coverage, which 

demonstrates the practicality. 

The remainder of this text is divided into the 

following sections. The key ideas discussed in this 

study, including WSN and the CS, are reviewed in 

Section 2. In Section 3, a thorough explanation of 

the planned ICS-OBL-OBL is given. In Section 4 

and Section 5, the optimization of ICS-PSO-OBL is 

tested, and Section 5 applies it to the coverage 

optimization problem of WSN. A summary of 

Section 6's major conclusions and contributions 

comes at the end of the section. 
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Related notions 

Sensor network node coverage model 

The monitoring area of the WSN is characterized as 

a rectangular region with a length denoted as L and 

a width denoted as W, resulting in a total area of L

×W. Inside this monitoring region, n sensor nodes 

are distributed randomly. This n-node set is referred 

as as A={Ai=(xi,yi) | i=1,2,…,n}, where each node 

Ai is characterized by its coordinates (xi, yi). The 

sensor nodes in the network employ a Boolean 

sensing model, meaning that they could detect 

events or targets within a certain distance and could 

not sense anything beyond that distance. Each 

node's sensing radius is represented by the letter R, 

indicating the radius of the circular region centered 

at the node within which it could sense events or 

targets. Furthermore, each node has a 

communication radius denoted as r, representing the 

maximum distance over which it could establish 

wireless communication with other nodes in the 

network. 

To determine the network coverage, the monitoring 

area is discretized into L × W cells of equal size. 

The center point of each cell represents a 

monitoring point, and the set of these monitoring 

points is denoted as B={Bj=(xj,yj) | j=1,2,…,L×W}. 

As illustrated by Eq.1, the Euclidean distance serves 

as the metric for determining the separation 

between a monitoring point and a sensor node. 

𝑑(𝐴𝑖 , 𝐵𝑗) = √(𝑥𝑖 − 𝑥𝑗)
2
+ (𝑦𝑖 − 𝑦𝑗)

2         1 

The probability of a monitoring point Bj is sensed 

by a sensor node Ai, given that the sensing radius of 

the nodes is R, is represented by Eq.2. In this 

equation, Bj is considered to be sensed by Ai if it 

falls within the circle centered at Ai with a radius of 

R. 

P(Ai,Bj) = {
1 ifd(Ai, Bj) ≤ R

0 otherwise
               2 

Each monitoring point, denoted as Bj, has the 

potential to be detected by multiple sensor nodes, 

labeled as Ai. The collective sensing probability, 

quantifying the likelihood that Bj will be detected 

by at least one of the sensor nodes Ai, is precisely 

defined in Eq.3. 

𝐶𝑝(𝐴all, 𝐵𝑗) = 1 −∏ (1 − 𝑝(𝐴𝑖, 𝐵𝑗))
𝑛
𝑖=1        3 

The coverage area is established as the summation 

of the joint sensing probabilities across all 

monitoring sites, with Aall representing the entire 

ensemble of sensor nodes within the region. 

The coverage rate (Cr) is then formally defined as 

the proportion of the coverage area in relation to the 

overall area of the region, as depicted in Eq.4. 

𝑪𝒓 =
∑ 𝑪𝒑
𝑳×𝑾
𝒋=𝟏 (𝑨𝐚𝐥𝐥,𝑩𝒋)

𝑳×𝑾
                          4 

 

Standard CS 

CS is an intelligent search algorithm that combines 

the brood parasitism behavior of cuckoos and the L

évy flight pattern observed in insects like fruit flies. 

The principle of CS is to map the cuckoo's brood 

parasitism behavior to the solutions in the 

algorithm's population space, using the quality of 

the cuckoo's nest as a measure of the solution's 

fitness. To establish a correlation between the brood 

parasitism behavior, three idealized rules are taken 

into account 
15

: 

Assumption 1: Only one egg is laid by each cuckoo 

at a time, and the nest chosen for incubation is at 

random. 

Assumption 2: From a random selection of nests, the 

one situated in the best location is retained for the 

subsequent generation. 

Assumption 3: The probability Pa denotes the 

possibility that a host bird will come into contact 

with a foreign egg, and the number of nests is 

constant. Upon such an encounter, the host bird can 

choose to abandon the foreign egg or initiate a new 

nest. 

In accordance with these assumptions, the 

fundamental process of the standard CS algorithm 

unfolds as follows: 

Step 1: Set the parameters for the algorithm and 

define the problem. 

Step 2: Generate N nests in the D-dimensional 
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space using Eq.5 and evaluate the randomly 

generated nest positions. Retain the information of 

the best nest: 

x = LB + rand(D) × (UB − LB)              5 

where x is the set of randomly generated nests; The 

upper and lower boundaries of the search space are, 

respectively, UB and LB; A D-dimensional random 

number, rand(D), has values in each dimension 

ranging from 0 to 1. 

Step 3: Lévy flight updates the nest positions. 

Assume that the position of the ith nest is 

,    1 ,ix i N   for the tth generation of nests 
t

ix  

by Eq.6 to obtain the t+1th generation of nests 
1t

i


x : 

xi
t+1 = xi

t +α⊕Levy(β), i = 1,2,⋯ , n     

6 

where   is the step control volume;   is the 

point-to-point multiplication. e ( )L vy   is the 

random search path, obeying the Lévy distribution: 

( ) ,    1 3Levy t       , where   is the 

random step size obtained from the Lévy flight. 

Due to the relative difficulty of performing 

integration operations on the Lévy distribution, Lé

vy flight is generally simulated by Eq.7. 

Levy(β) =
μ

|ν|

1

β
                          7 

where   and   are random numbers obeying 

normal distribution:    2 20, , 0,u vN v N    , 

generally 1, 1.5v   ,  u  are calculated 

through Eq.8: 

σ
u
= {

Γ(1+β)⋅sin(πβ/2)

Γ[(1+β)/2]⋅β⋅2(β−1)/2
}
1/β

              

8 

Step 4: Preference random wandering. Following 

the removal of a portion of the solutions using a 

specific probability termed the discovery 

probability (Pa), the algorithm proceeds to generate 

an equal number of new solutions based on Eq.9. 

During this process, it evaluates the nest 

information subsequent to the update while 

preserving the existing optimal nest information. 

xi
t+1 = xi

t + r(xg
t − xk

t )                      

9 

where r is a scaling factor obeying a (0,1) uniform 

distribution, and xgt and xkt are two randomly 

selected nests in the population of the tth 

generation. 

Step 5: The algorithm's evaluation hinges on the 

fulfillment of the termination condition. The 

algorithm completes and outputs the optimal value 

if the termination condition is satisfied. Conversely, 

if the termination condition remains unsatisfied, the 

process advances to step 3, and iteration persists. 

ICS-PSO-OBL algorithm 

It is clear from examining the conventional CS's 

iterative approach that the optimization process is 

bifurcated into two distinct phases: global search 

and local search. The algorithm largely relies on 

Lévy flights to investigate and locate the best 

answer during the global search. The approach uses 

a differential operation between two randomly 

produced solutions during the local search phase to 

further focus the search. 

Nonetheless, the CS faces a challenge in balancing 

exploration and exploitation. This predicament 

arises from the pronounced randomness associated 

with Lévy flights and the relatively limited local 

search capabilities stemming from the differential 

operation. Additionally, in high-dimensional 

optimization problems, there is interference 

between different dimensions, further complicating 

the search process. 

The proposed improved CS using PSO operator and 

OBL (ICS-PSO-OBL) is used to address these 

challenges and better balance global and local 

search due to following three improvements. 

Integration with PSO Operator 

The PSO algorithm will retain two sets of 

information, the personal optimum and the global 

optimum, to guide the particle-in search during the 

run 
16

. This search method has a stronger local 

search capability compared with the CS's double 

stochastic solution as a difference search method. 

https://doi.org/10.21123/bsj.2024.9707
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So in the preferred random wandering phase of CS, 

an adaptive inertia weight PSO operator is used to 

replace the differential operation between two 

randomly generated solutions to enhance the local 

optimization capability.  

For the ith individual in the tth generation, its 

position is updated by the following formulas (10) 

and (11). 

vi
t+1 = ωvi

t + c1r1(pbesti
t − xi

t) + c2r2(gbest
t −

xi
t)                                    10 

xi
t+1 = xi

t +ν
i

t+1
                         11 

Where, vit, vit+1 represent the speed of the ith 

individual in the tth and t+1th generation, 

respectively; xit, xit+1 represent the position of the 

ith individual in the tth and t+1th generation, 

respectively; pbesti
t
 represents the optimal value of 

the ith individual from the 1st generation to the tth 

generation; gbesti
t
 represents the optimal value 

among all individuals in the tth generation; c1, c2 are 

learning factors , representing the "self-awareness" 

and "social awareness" of the individuals in the 

algorithm; r1 and r2 are random numbers between 

[0,1];   is the inertia weight, which determines 

how the speed of the next generation is influenced 

by the speed of the previous generation. The 

variance, i.e., the aggregation of individuals in the 

population, is updated adaptively. As the iterations 

continue, when the algorithm starts to converge, i.e., 

the variance decreases, the distribution of 

individuals in the population gradually concentrates 

and the population diversity decreases,   

increases accordingly at this time to avoid 

premature convergence of the algorithm, and   is 

updated in the following way. 

ωt = ωmin + (ωmax −ωmin) × Dt          12 

Where, t represents the inertia weight   in the 

tth generation; min
 and max

 represent the 

minimum maximum of  , respectively; and Dt is 

the diversity function and calculated by Eq.13. 

Dt = 1 −
2

π
arctan(E)                     13 

where E is the fitness variance for the entire 

population as determined by Eq.14. 

𝐸 =
1

𝑁
∑ (𝑓(𝑥𝑖) − 𝑓𝑎𝑣𝑒)

2𝑁
𝑖=1                   14 

Where，  if x  is the adaptation value of the current 

ith individual;  
1

1 N

ave i

i

f f x
N 

   is the average 

adaptation value of all current individuals. 

OBL Strategy 

OBL is a search strategy that compares the 

separation between a point and a random point in its 

opposite position and the optimal solution, 

recursively halving the search interval to search for 

the optimal solution faster 
17. 

ICS-PSO-OBL 

incorporates the OBL strategy to broaden the search 

space exploration and enhance the population's 

diversity. To further solve the problem of substantial 

computational effort caused by the OBL strategy to 

form the reverse solution for all individuals in 

high-dimensional optimization problems, 

ICS-PSO-OBL divides the elite individuals by 

fitness value and only performs the reverse solution 

operation on the elite individuals to reduce the 

computational effort and improve the search 

efficiency. 

Let the set  ,1 ,2 ,, , ,i i i i DB b b b  be the elite 

individuals in the current cuckoo population, and its 

corresponding inverse solution  ,1 ,2 ,, , ,i i i i DB b b b  

is calculated using Eq.15: 

Bi,j = ε(xj + yj) − bi,j                    15 

Where: 0,1 （ ） is the generalization factor;

, ,i j j jb x y    is denoted as the dynamic boundary of 

the search space in the jth dimension, xj, yj are the 

upper and lower bounds respectively, which could 

be calculated by xj=min(Bi,j ),yj=max(Bi,j ). 

Dimension-by-dimension Updating 

When solving multidimensional optimization 

problems using the approach of updating old 

solutions in all dimensions, one commonly faces the 

issue of interferences among different dimensions 
18

. 

This means that when the solution is updated, each 

dimension changes, which may deteriorate the 

solution's fitness. Consequently, the new solution 

might be discarded, neglecting the impact of 
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individual dimension changes on the solution's 

fitness. To address this problem, the strategy of 

evaluating dimensions one by one (the sequential 

update evaluation strategy) is introduced to 

effectively mitigate the coupling phenomenon 

among dimensions in issues with high-dimensional 

optimization. The specific strategy is as follows: 

A new solution is created whenever a value in the tth 

dimension of a solution is updated by combining it 

with the vectors of all other dimensions.If the 

quality of the new solution does not improve, the 

update in the current dimension is discarded, and 

the old value from the tth dimension is retained. The 

evaluation then continues with the t+1th dimension. 

If the quality of the new solution improves, the new 

value from the tth dimension is retained, and the 

evaluation proceeds to the t+1th dimension. In the 

CS, applying the sequential update evaluation 

strategy in the local search stage effectively utilizes 

the exceptional information from individual 

dimensions to guide the current solution in local 

search, resulting in higher-quality solutions. 

The implementation steps for ICS-PSO-OBL are as 

follows. 

Step 1: Initialize parameters. 

Step 2: The process begins with creating a new 

population, and each individual's fitness is 

evaluated. Eq.5 stochastically generates the initial 

population within the search space. 

Step 3: Update the positions of all nests using 

Eq.6-8 and greedily select nests with higher fitness 

to retain. 

Step 4: For each nest, generate a random number in 

the range of 0 to 1, and compare it with the 

discovery probability (Pa) to determine the nests 

that need to be updated. Determine the inertia 

weight using Eq.12-14 and update the nest positions 

using the sequential update strategy in Eq.10-11. 

Greedily select nests with higher fitness to retain. 

Step 5: After selecting the top 1/10 individuals 

based on fitness, generate reverse solutions using 

Eq.15 and update the current nest positions. 

Greedily select nests with higher fitness to retain. 

Step 6: Output the best solution if the termination 

condition is satisfied after the current iteration; 

otherwise, return to Step 3.

 

Function optimization test experiment and analysis 

Selection of benchmarking functions 

Ten benchmarking functions are chosen in this part 

to evaluate the viability of the suggested 

ICS-PSO-OBL, and numerical comparisons of the 

optimization results are made with the standard CS 
10

 and three other CS variants, MACS 
19

, ICS-2 
20

, 

ICS 
21

. Each algorithm was optimized 

independently for each test function 30 times, and a 

maximum of 1000 iterations was established to 

assure the test's impartiality and reduce the impact 

of randomness in the algorithmic optimization 

process. Table 1 records the selected functions. 

Table 1 records the selected functions. 

Table 1. Ten benchmark functions in the experiment. 

No Function Formula Dim Interval f(x*) 

F1 Sphere 
2

1

1

D

i

i

F x


  30 [-5.12,5.12] 0 

F2 Step  
2

2

1

0.5
D

i

i

F x


 
 

30 [-100,100] 0 

F3 
Schwefel 

2.22 
3 1

1

=
D

D

i i i

i

F x x




 

30 [-100,100] 0 

F4 Rosenbrock    
2 22

4 1

1

100 1
D

i i i

i

F x x x



    
  

 

30 [-30,30] 0 

F5 Ackley  2

5

1 1

1 1
20exp 0.2 exp cos 2 20

D D

i i

i i

F x x e
D D


 

   
            

 

 

30 [-32,32] 0 
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F6 Griewank 
2

6

1 1

cos 1
4000

DD
i i

i i

x x
F

i 

 
   

 
 

 

30 [-600,600] 0 

F7 Rastrigin   2

7

1

10cos 2 10
D

i i

i

F x x


  
 

30 [-600,600] 0 

F8 Bohachevsky 
 

 

2 2
1

1

8

1 1

2 0.3cos 3

0.4cos 4 0.7

D
i i i

i i

x x x
F

x








 

  
  

   


 

30 [-100,100] 0 

F9 Beale 
2 2 2 3 2

9 1 1 2 1 1 2 1 1 2(1.5 ) (2.25 ) (2.625 )F x x x x x x x x x        
 

2 [-4.5,4.5] 0 

F10 SchafferN.2 

2 2 2

1 2
10 2

2 2

1 2

sin ( ) 0.5
0.5

1 0.001( )

x x
F

x x

 
 

   

 

2 [-100,100] 0 

 

Parameter settings  

According to Table 2, the parameters was created 

based on references 
6, 16, 17,18

. 

Table 2. Initialization parameters of all algorithms. 

Initialization parameters for each algorithm 

CS 
0 0.01 0.25aP  ，  

MACS 
0  max  min0.01, 0.25, 0.15a aP P     

ICS-2 
0  max  min0.01, 1, 0.3a aP P     

ICS 
0 b0.01, 0.25, 0.35aP P     

ICS-PSO-OBL 
1 2 max min max mi 0 an 1.3, 0.251, 0.6, 0.05, 1, 1,C C V PV        

  

Optimization test results 

Fig. 1 represents the average convergence curve of 

5 algorithms for functions F1-F8, independently 

optimized 1000 times in 30-dimensional space. Fig. 

2 represents the average convergence curve of 5 

algorithms for function F9-F10 in 2-dimensional 

space for 1000 times of independent optimization. 

 
a. Average convergence of F1                    b. Average convergence of F2 
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c. Average convergence of F3                    d. Average convergence of F4 

 
e. Average convergence of F5                  f. Average convergence of F6 

 
g. Average convergence of F7              h. Average convergence of F8 

Figure 1. Optimization of test functions in 30 dimension. 
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a. Average convergence of F9                    b. Average convergence of F10 

Figure 2. Optimization of test functions in 2 dimension.

Table 3 lists the five methods' outcomes of 

optimization in a 30-dimensional space for the 

functions F1-F8 after 1000 iterations, and Table 4 

lists the 5-algorithm optimization outcomes in 

2-dimensional space for the functions F9-F10 after 

1000 iterations. min denotes the optimal value of 

the algorithms in 30 optimization attempts, mean 

represents the average value of the algorithms' 

outcomes over 30 different optimization efforts, 

while std represents the algorithms' standard 

deviation. 

Table 3. Test function optimization results under 30 dimension. 

No Function Indicator CS MACS ICS-2 ICS ICS-PSO-OBL 

  Best 1.88E-02 4.24E-11 1.07E-05 6.30E-03 1.00E-20 

F1 Sphere Mean 1.73E-01 1.57E-09 4.93E-05 1.23E-01 2.15E-16 

  Std 5.83E-02 1.65E-09 3.36E-05 6.47E-02 6.58E-16 

  Best 7.78E-02 4.93E-11 1.08E-18 3.17E-06 1.94E-25 

F2 Step Mean 7.09E-01 2.72E-09 1.38E-12 3.91E-03 3.77E-24 

  Std 2.01E-01 3.75E-09 7.46E-12 3.24E-03 4.45E-24 

  Best 4.47E-01 2.25E-06 2.44E-20 1.25E-04 2.44E-20 

F3 Schwefel 2.22 Mean 1.65E+00 6.44E-06 1.26E-19 4.57E-02 1.16E-19 

  Std 3.46E-01 3.78E-06 8.81E-20 2.33E-02 6.87E-20 

  Best 1.22E-20 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

F4 Rosenbrock Mean 5.39E-13 0.00E+00 0.00E+00 1.66E-31 0.00E+00 

  Std 1.01E-12 0.00E+00 0.00E+00 9.10E-31 0.00E+00 

  Best 3.24E-01 1.00E-05 1.98E-09 2.43E-04 1.53E-13 

F5 Ackley Mean 9.79E-01 9.19E-05 1.05E-07 2.54E-02 8.52E-13 

  Std 3.09E-01 2.21E-04 1.66E-07 1.45E-02 7.68E-13 

  Best 4.87E-04 5.14E-09 0.00E+00 5.90E-05 2.42E-10 

F6 Griewank Mean 5.91E-03 3.10E-01 6.67E-05 2.03E-04 1.08E-02 

  Std 2.41E-03 3.76E-01 1.92E-04 9.96E-05 1.51E-02 

  Best 1.11E+01 5.14E+01 3.29E+01 7.37E+01 5.12E-10 

F7 Rastrigin Mean 1.47E+01 8.32E+01 5.77E+01 1.19E+02 3.85E-02 

  Std 1.89E+00 1.60E+01 2.78E+01 1.84E+01 1.79E-01 

  Best 4.88E-15 6.74E-09 1.40E-02 1.28E-11 0.00E+00 

F8 Bohachevsky Mean 6.15E-09 1.77E-01 4.72E+00 1.95E-01 5.35E-10 

  Std 1.11E-08 2.83E-01 2.76E+00 2.19E-01 2.87E-09 
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Table 4. Test function optimization results under 2 dimension. 

No Function Indicator CS MACS ICS-2 ICS ICS-PSO-OBL 

  Best 1.02E-18 0.00E+00 0.00E+00 0.00E+00 5.92E-04 

F9 Beale Mean 7.38E-14 0.00E+00 0.00E+00 0.00E+00 9.33E-05 

  Std 3.94E-13 0.00E+00 0.00E+00 0.00E+00 1.33E-04 

  Best 5.18E-11 0.00E+00 0.00E+00 0.00E+00 8.28E-07 

F10 SchafferN.2 Mean 3.23E-08 0.00E+00 0.00E+00 0.00E+00 2.21E-03 

  Std 7.99E-08 0.00E+00 0.00E+00 0.00E+00 3.09E-03 

 

By studying Figs 1-2 and Tables 3-4, the following 

conclusions may be made. 

For F1, for this kind of continuous single-peaked 

spherical function with only a unique global 

minimum, the other algorithms except 

ICS-PSO-OBL have a gentle downward trend. At 

the same time, the convergence curve of 

ICS-PSO-OBL is sometimes horizontal. Sometimes, 

there is a jump, and the overall shape is a ladder. In 

addition, ICS has a similar iteration trend compared 

with the standard CS, which does not show a 

significant advantage. In contrast, MACS and ICS-2 

show significant differences in the iteration trend 

with the standard CS, which has a faster 

convergence speed. 

For F2, because the values of such functions are 

distributed in each dimension in a step-like manner 

and are not derivable at the step boundaries, it is 

more difficult to find the correct direction toward 

the global optimal solution. All the functions cannot 

converge stably to the global optimum, in which all 

four algorithms significantly outperform the 

standard CS. The ICS-PSO-OBL shows a clear 

advantage when facing this kind of function, with 

an iterative tendency that is better than the other 

three CS variants and a higher search accuracy for 

the optimum. 

For F3, the solution space of such functions will 

show intense complexity at higher dimensions. 

However, in the 30-dimensional search space, all 

four CS variants can be optimized efficiently, 

among which, ICS-2 decreases faster in the early 

stage while maintaining similar convergence 

accuracy with MACS in the later stage; the iterative 

trend of ICS-PSO-OBL has a slanting trend, which 

indicates that the dimension-by-dimension updating 

strategy allows the current optimal solution of 

ICS-PSO-OBL to be updated efficiently at each 

iteration. 

For F4, MACS, ICS-2, and ICS-PSO-OBL 

converge to the theoretical optimum within 400 

iterations. However, ICS-PSO-OBL combined with 

the PSO operator significantly outperforms the 

other two CS variants regarding convergence 

speed.ICS does not converge to the global optimum, 

but its convergence trend is still better than standard 

CS. 

For F5, for this kind of test function with multiple 

extreme points, MACS and ICS-2 with adaptive 

discovery probability can balance their own local 

and global search ability, which makes them have 

strong optimization ability in the face of multiple 

extreme points, whereas ICS has added the current 

optimal solution as a guide in the local search phase, 

which does not show a good effect in the face of 

this kind of function with multiple extreme points; 

and ICS-PSO-OBL is not converged to the global 

optimal value, but it has the optimal iterative 

tendency. 

For F6 and F7, the two test functions are similar, 

with ample search space and many local minima. 

However, the performance of ICS-2 is diametrically 

opposite in F6 and F7: ICS-2 achieves the optimal 

convergence accuracy in F6. At the same time, the 

iterative tendency of ICS-2 is even worse than that 

of the standard CS in F7. The improvement 

strategies of ICS-2 and MACS may not be as 

effective as those of the standard CS, suggesting 

that the improvement strategies of ICS-2 and 

MACS may not achieve better results when facing 

such functions with ample search space. Meanwhile, 

MACS is not as good as standard CS, indicating 

that the improved strategies of ICS-2 and MACS 

may not achieve good results when facing this kind 

of function with ample search space.ICS-PSO-OBL 

shows a stepwise decrease, indicating that the 
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algorithm has fallen into the local optimum many 

times, possibly due to the dimension-by-dimension 

updating strategy to ensure that each dimension has 

been updated. However, the final combination of 

PSO ICS-PSO-OBL, which combines the PSO 

operator, dimension-by-dimension updating, and the 

opposition-based learning strategy, still achieves the 

best optimization results.ICS has the lowest 

standard deviation in function F6, which indicates 

that it has the highest stability. At the same time, it 

takes 200 iterations to enter a local optimum in 

function F7, which makes it ineffective for 

optimization. 

For F8, ICS-2, ICS, and standard CS show similar 

iterative trends, with no significant difference in 

convergence accuracy and convergence speed 

compared to standard CS, and standard CS has the 

lowest standard deviation and higher stability 

compared to ICS-2 and ICS. The convergence 

accuracy and speed of MACS are far higher than 

those of the CS but still insufficient compared to 

ICS-PSO-OBL. ICS is similar to ICS-PSO-OBL, 

which combines PSO operators. Both add the 

current global optimal solution as a guide during the 

local search process. However, the addition of the 

other search strategies of ICS-PSO-OBL leads to 

the final optimization result of ICS being inferior to 

that of ICS-PSO-OBL. Inferior to ICS-PSO-OBL. 

For F9 and F10, for such low-dimensional test 

functions, MACS, ICS-2, and ICS all converge 

stably to the optimal value, compared to which the 

iterative trend of ICS-PSO-OBL is even worse than 

that of the standard CS, which suggests that the 

improvement strategy of ICS-PSO-OBL fails to 

achieve a better result when facing such 

low-dimensional test functions. 

Overall, in the optimization experiments on 10 test 

functions, ICS-PSO-OBL has a better iteration trend 

in the face of high-dimensional test functions and 

has the best iteration trend, convergence accuracy, 

and algorithmic stability, except for function F6; 

however, its improvement strategy is ineffective in 

the face of low-dimensional test functions and even 

reduces the convergence accuracy and speed. The 

above results show that ICS-PSO-OBL, which 

integrates PSO operator, dimension-by-dimension 

updating, and opposition-based learning strategy, 

has more vital optimization ability and stability than 

the standard CS and the rest of the three CS variants 

when facing high-dimensional functions, which also 

verifies the effectiveness of ICS-PSO-OBL from the 

side. 

 

WSN Coverage Optimization Experiment and Analysis 

Parameter setting 

To verify the CS's efficiency in solving the WSN 

coverage issue, the standard CS is used to optimize 

the problem with the coverage rate (Cr) (Eq.4) as 

the fitness value. In addition, the MACS, ICS-2, 

ICS, and ICS-PSO-OBL algorithm are also included 

for comparison in the same environment to 

demonstrate the superiority of the ICS-PSO-OBL 

over the other algorithms. According to reference 3, 

the experimental parameter settings are created as 

presented in Table 5. 

Table 5. Parameter setting of WSN coverage experiment. 

Parameters Value 
Monitoring area 100m×100m 
Number of nodes 20/30 

Node perception radius r 12m 

Number of iterations T 200 

Number of Pixel Dots 100×100 

 

The comparison algorithm is parameterized based 

on the Table 2. 

Optimize coverage results 

Table 6 lists the coverage rate values obtained by 

CS, MACS, ICS-2, ICS, and ICS-PSO-OBL to 
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optimize the WSN coverage problem under different scenarios with node counts of 20 and 30. 

Table 6. Comparison of coverage results. 

Coverage by algorithm 

Algorithm/Number of Nodes 20 30 

CS 64.22% 80.50% 

MACS 74.69% 87.83% 

ICS-2 67.58% 85.17% 

ICS 73.56% 89.69% 

ICS-PSO-OBL 82.58% 97.44% 

 

From Table 6, it could be observed that in the case 

of 20 nodes, the coverage rate of the ICS-PSO-OBL 

is 18.36% higher than that of the CS, 7.89% higher 

than that of the MACS, 15% higher than that of the 

ICS-2, and 9.02% higher than that of the ICS. 

Similarly, in the case of 30 nodes, the coverage rate 

of the ICS-PSO-OBL is 16.94% higher than that of 

the CS, 9.61% higher than that of the MACS, 12.27% 

higher than that of the ICS-2, and 7.75% higher 

than that of the ICS. Therefore, the ICS-PSO-OBL 

consistently achieves higher coverage rates 

compared to the CS and CS variants, regardless of 

the number of nodes. 

Sensor node distribution map 

Fig. 3-7 depict the node distribution for optimizing 

WSN coverage using the CS, MACS, ICS-2, ICS, 

and ICS-PSO-OBL under scenarios with 20 and 30 

nodes. 

  
(a)Node count set at 20                 (b)Node count set at 30 

Figure 3. Optimize coverage of sensor networks using CS. 

 
(a)Node count set at 20          (b)Node count set at 30 

Figure 4. Optimize coverage of sensor networks using MACS. 
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(a)Node count set at 20            (b)Node count set at 30 

Figure 5. Optimize coverage of sensor networks using ICS-2. 

 
(a)Node count set at 20             (b)Node count set at 30 

Figure 6. Optimize coverage of sensor networks using ICS. 

 
(a)Node count set at 20             (b)Node count set at 30 

Figure 7. Optimize coverage of sensor networks using ICS-PSO-OBL. 

Fig. 3-7 show that, whether with 20 or 30 sensor 

nodes, the optimization results of CS, MACS, ICS-2, 

and ICS algorithms are inferior to that of the 

ICS-PSO-OBL algorithm. The four algorithms 

exhibit significouldt coverage holes and high 

redundancy in the monitored area. In contrast, the 

ICS-PSO-OBL achieves a more uniform node 

distribution, reduced redundancy, and a more 
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comprehensive coverage range in the wireless 

network. 

Coverage convergence graph 

Fig. 8 represents the convergence curve of coverage 

rates for CS, MACS, ICS-2, ICS, and 

ICS-PSO-OBL algorithms during 200 iterations in 

the optimization of WSN coverage for both 20 and 

30 sensor nodes. 

 
(a)Node count set at 20                   (b)Node count set at 30 

Figure 8. Convergence curves. 

 

Fig. 8 shows that in the optimization of WSN 

coverage, the standard CS enters a stagnation state 

too early and gets trapped in local optima for both 

20 and 30 sensor nodes. While MACS, ICS-2, and 

ICS algorithms show effectiveness in optimization, 

their convergence speed and accuracy are inferior to 

ICS-PSO-OBL, regardless of the number of nodes 

being 20 or 30. Therefore, compared to CS, MACS, 

ICS-2, and ICS algorithms, the ICS-PSO-OBL 

demonstrates more substantial competitiveness 

regarding search accuracy, convergence speed, and 

stability in optimizing WSN coverage. 

 

Conclusion 

The ICS-PSO-OBL is the foundation of the network 

coverage approach proposed in this paper. 

ICS-PSO-OBL effectively balances the algorithm's 

capability for local and global search, and reduces 

the interference between dimensions in 

high-dimensional optimization problems by 

combining the PSO operator with the 

dimension-by-dimension update local search 

method. By choosing elite individuals based on 

their fitness scores, the algorithm performs reverse 

solution operations to broaden the search area and 

increase optimization precision, and its advantages 

over the other three CS variants are examined by 

optimization tests with ten benchmark functions. 

Finally, the application of ICS-PSO-OBL is 

extended to address optimization challenges in 

WSN coverage. Through simulation experiments, it 

is found that ICS-PSO-OBL could significantly 

improve the WSN coverage compared to the 

standard CS and its three variants. It achieves a 

more uniform distribution of sensor nodes. 

Moreover, applying ICS-PSO-OBL reduces the 

number of nodes and lowers deployment costs. 
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 وارزمية بحث الوقواق المحسنة لزيادة نطاق التغطية لشبكات الاستشعار اللاسلكيةخ

 تشينغ تشو-، كايوين كانغ-هونغ شيانغ، دي-يو يانغ، يين-سين

 .، هونان، الصين416000الإلكترونية، جامعة جيشو، جيشو، مدرسة الاتصالات والهندسة 

 
 
 

 ةالخلاص

 CSتمت معالجة مسألة زيادة النطاق الذي تغطيه شبكة أجهزة الاستشعار اللاسلكية باستخدام أجهزة الاستشعار المقيدة باستخدام 

في البداية، يتم تنفيذ التكرار عن طريق  .(ICS-PSO-OBLوالتعلم القائم على المعارضة ) PSOالمحسنة التي تستخدم خوارزمية 

 PSOتحديث بعُد الحل القديم تلو الآخر لتحقيق تحديث مستقل عبر الأبعاد في مشكلة التحسين عالية الأبعاد. يتم بعد ذلك دمج مشغل 

ين من بين السكان باستخدام لتقليل تفضيل مرحلة المشي العشوائي بين القدرة على الاستكشاف والاستغلال. يتم اختيار أفراد استثنائي

OBL  لتعزيز فرصة العثور على الحل الأمثل بناءً على قيمة اللياقة البدنية. يتم استخدامICS-PSO-OBL  لتعظيم التغطية فيWSN 

في التجارب، يتم استخدام  .WSNعن طريق تحويل المراقبة الإقليمية إلى مراقبة النقاط باستخدام طريقة التمييز في 

ICS-PSO-OBL  معCS  القياسي وثلاثة متغيراتCS (MACS ،ICS-2و ،ICS)  لتنفيذ تجربة المحاكاة تحت أعداد مختلفة من

% 7.894% و18.36أعلى بنسبة  ICS-PSO-OBL، على التوالي(. تكشف النتائج التجريبية أن التغطية المحسنة لـ 30و 20العقد )

. علاوة على ذلك، فهي أعلى 20عندما يكون عدد العقد  ICSو ICS-2و MACSو CS% من التغطية القياسية لـ 9.02% و15و

، وتوزيع العقد ICS-PSO-OBL، وسرعة تقارب 30% عندما تكون كمية العقد 7.75% و12.27% و9.61% و16.94بنسبة 

 .متفوق على الآخرين

مشغل  ،شبكة استشعار لاسلكي ،م على المعارضةالتعلم القائ، تحديث البعد تلو الآخر، خوارزمية بحث الوقواق الكلمات المفتاحية:
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