

Page | 802

2024, 21(2 Special Issue): 0802-0811

https://doi.org/10.21123/bsj.2024.9710

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

Hybrid Framework To Exclude Similar and Faulty Test Cases In Regression

Testing

Muhammad Asim Siddique* , Wan M.N. Wan-Kadir , Johanna Ahmad , Noraini

Ibrahim

Faculty of Computing, Universiti of Teknologi, Johor Bahru, Malaysia.

*Corresponding Author.

PARS2023: Postgraduate Annual Research Seminars 2023.

Received 27/09/2023, Revised 10/02/2024, Accepted 12/02/2024, Published 25/02/2024

 © 2022 The Author(s). Published by College of Science for Women, University of Baghdad.

This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License,

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly

cited.

Introduction

Software testing is a crucial analytical

process that provides stakeholders with information

about the caliber of a good or service under review1.

Software development is a crucial step in the

software development lifecycle that guarantees the

program satisfies customer requirements,

specifications, and quality standards. New research

techniques have been developed as technology

advances, bringing additional challenges,

shortcomings, and barriers. Software systems grow

in size and complexity, making quality more elusive

and unstable. According to Tilley and Floss1,

complex systems make existing research challenges

more intricate and give rise to new ones. Because one

of their duties is to improve software quality,

developers are aware of the aggravation caused by

flaws in software and are committed to finding a

solution. The limitations of retest-all, growing code

and test suite size of software systems, and altering

landscape of testing requirements provide the

rationale for effective regression testing.

The effectiveness of regression testing

techniques is context-dependent Terragni, Cheung,

& Zhang2, like time constraints, incremental resource

availability and time to release for products. The

method of selecting test cases was based on using

Abstract

Regression testing is a crucial phase in the software development lifecycle that makes sure that new

changes/updates in the software system don’t introduce defects or don’t affect adversely the existing

functionalities. However, as the software systems grow in complexity, the number of test cases in regression

suite can become large which results into more testing time and resource consumption. In addition, the

presence of redundant and faulty test cases may affect the efficiency of the regression testing process.

Therefore, this paper presents a new Hybrid Framework to Exclude Similar & Faulty Test Cases in

Regression Testing (ETCPM) that utilizes automated code analysis techniques and historical test execution

data to identity and exclude redundant, similar and faulty test cases from the given regression suite. Our

experimental results clearly show the benefits of the ETCPM framework in terms of reduction in the testing

time, optimization of the resource allocation, and improvement in the overall quality of regression test suite.

ETCPM enables software development teams to achieve faster and reliable regression testing by intelligent

exclusion of similar and fault test cases, which yields in reduction in the software delivery cycles and better

end user satisfaction.

Keywords: Regression Testing, Software Maintenance, Software Quality, Test Case Prioritization, Test

Case Selection.

https://doi.org/10.21123/bsj.2024.9710
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0002-7948-3561
mailto:muhammadsiddique@graduate.utm.my
https://orcid.org/0000-0003-4459-4050
mailto:wnasir@utm.my
https://orcid.org/0000-0002-1620-0264
mailto: johanna@utm.my
https://orcid.org/0000-0002-8923-9960
mailto:norainiibrahim@utm.my

Page | 803

2024, 21(2 Special Issue): 0802-0811

https://doi.org/10.21123/bsj.2024.9710

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

coverage facts capable of identifying faults as a

substitute3. The test suite size is used as reduction

criteria for test case reduction techniques4. Thus,

time, coverage, redundancy, and fault detection

ability play an important role in regression testing as

adequacy criteria as well as the selection,

prioritization, or ordering criteria with respect to the

context chosen for the technique under study5. The

code change information is an additional parameter

for test case selection methods. However, reduction

and prioritization techniques ignore code changes

during the regression testing process6.

The time, coverage, redundancy, and fault

detection ability are not strongly correlated7.

Regression Test Case Selection (RTS) methods are

categorized into three types based on their

effectiveness: single-criterion, bi-criteria, or multi-

criteria approaches. The single objective selection

techniques fulfill one aspect (time, coverage, fault

detection ability, and redundancy) but ignore the

other two effectiveness measures. The multi-

objective selection techniques focus on two or more

effectiveness measures simultaneously. The

measurement of the relationship between these

effectiveness measures remains an open problem8.In

Fig.1. regression testing process is further explained.

Figure 1. Regression testing

Various models, frameworks, and automated

solutions have been developed and suggested to

implement techniques for multi-objective test case

selection, prioritization, and reduction9. The basic

idea behind these models and frameworks is based

on the relationship between effectiveness measures.

These effectiveness measures are time and

efficiency10. The test case selection techniques

impose an additional measure: code change

information. Primarily, prioritization and reduction

techniques are the subset of the test case selection

techniques. The test case selection frameworks11,

coverage-based, fault detector and redundant test

case selection frameworks12, dynamic code changes-

based test case selection framework13 and pairwise

feature analysis of product line model 14 are found in

literature, techniques and accommodate multi-

objective problems. They cannot simultaneously

accommodate four effectiveness measures and

require a graph-based, code-slicing approach or pre-

processing code analysis to bind these effectiveness

measures15. Furthermore, these frameworks and

algorithms are context and language feature-

dependent, limiting their generalization property.

 To cut down on the expenses of regression

testing and enhance its effectiveness (in terms of

coverage, fault detection, and redundancy), as well

as the time efficiency of the chosen test suite, testers

can opt to decrease the test suite’s size, limit the

number of test case executions, shorten the test case

execution duration, choose a subset of test cases

previously run on the System Under Testing (SUT),

or prioritize the test cases more efficiently 13-15.

Information regarding coverage that includes fault

detection capabilities serves as a substitute for

choosing regression test cases. The primary goal of

these techniques for testers is to enhance the ability

to detect faults while reducing the duration of the

selected test suite 14. Regression testing has been

widely used to ensure that software evolution does

not break existing modules in the system 2. In fact,

effectively selecting test cases and detecting updated

changes can be difficult, especially in an

environment where test suite solutions are becoming

more and more complicated and distributed. 11.

Regression testing is crucial but can be significantly

https://doi.org/10.21123/bsj.2024.9710

Page | 804

2024, 21(2 Special Issue): 0802-0811

https://doi.org/10.21123/bsj.2024.9710

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

expensive in terms of time and efficiency 12.

While TCP with a prioritizing technique is

an example of a hybrid methodology with a high rate

of fault detection, TCS with a clustering method

lowers cost consumption. A combined effort

combining the two approaches might benefit the

community more. 8-9 were two of the first researchers

to use multiple techniques in their case study. By

modifying the software, Malhotra et al. were able to

boost confidence in its accuracy 6. In the meantime,

Suri and colleagues were able to shorten the

execution time and find the errors sooner than

previously 3-4. Therefore, it has been demonstrated

that a hybrid technique is likely to produce a better

regression outcome.

The Proposed Hybridization Method

The hybridization consists of two TCS, TCS

string similarity-based and search-based. The

method begins by undergoing the dataset through the

TCS process, followed by TCP. However, in both

TCS and TCP, different criteria are examined. In

TCS, variable similarity and fault detection are

measured, while in TCP, variable weight is

measured.

Figure 2. Test case priortization process

From these criteriaas mentioned in Fig.2. the

author is planning to benefit each variable to form the

best test plan for regression. Similarity helps identify

the furthest dissimilarity among test inputs, while

detection of faults helps in sorting test cases with a

high chance of getting faults. After both were

executed, the test plan generated from each approach

will hybrid and merge by applying a weight-based

approach. Test engineers can set weight on which

criteria to prioritize. The result can be in three forms:

similarity-based selection, search-based selection,

and balance scoring selection. Finally, based on the

selection, a final test plan is generated and ready to

execute regression.

https://doi.org/10.21123/bsj.2024.9710

Page | 805

2024, 21(2 Special Issue): 0802-0811

https://doi.org/10.21123/bsj.2024.9710

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

Test Case Similarity Reduction

Regression testing involves retesting a

software application after modifications to ensure

that new defects haven’t been presented or existing

functionality remains intact. The goal of test case

reduction is to reduce the number of test cases

required to adequately cover the functionality of a

software application. This can be especially helpful

when dealing with extensive test suites to save time

and resources. The study has improved the Jaro-

Winkler algorithm, a string similarity metric used to

compare two strings and determine their similarity.

It takes into account both character similarity and

character positions in the strings, providing a

similarity score ranging from 0 to 1, with 1 indicating

a perfect match. String algorithms or textual

similarity metrics are techniques for measuring the

closeness or dissimilarity of two text sequences.

These methods are commonly used in record linkage

tasks, where a fast and efficient way to calculate

overall similarity between two records is needed for

large datasets. In simple meaning, a string algorithm

is applied when the goal is to measure the similarities

between strings. The following functions are

considered in the similarity reduction phase.

Identify Similar Test Cases: Enhanced Jaro-

Winkler computes the distance between two strings,

so on its own it returns a similarity score. To use this,

an appropriate threshold must be defined to

determine when two test case names or descriptions

within the test suite are similar.

Set a Threshold: An example of this might be to set

the threshold so that test cases with a Jar-Jar-Winkler

similarity score of 0.8+ similar.

Group Similar Test Cases: Group test cases with

similarity scores ≧ a given threshold. These will be

sets of test cases that cover similar functionality.

Select Representative Test Cases: For each group,

select a representative test case. This could be the

most comprehensive test case from the group, the

most critical one, etc.

Remove Redundant Test Cases: Remove the non-

representative test cases from the groups as they are

redundant, covering similar functionality as the

representative test case.

Updated Test Suite: The condensed test suite now

consists of representative test cases from different

groups with similar functionalities, effectively

decreasing the total number of test cases while

maintaining comprehensive coverage.

Faulty Test Cases Exclusion

In this phase Automated Techniques are employed

for removing of faulty test cases using enhanced

Search -based algorithm in test case selection. In this

phase we use automated techniques for identifying

and removing the tests which are more probable to

produce wrong or erroneous outcomes. Search-based

algorithms are used to explore the space of all

potential test cases for the System Under Test (SUT)

& to seek out that subset of those tests that are most

likely to find defects or faults in the SUT. Here is the

general form on working of Phase III:

Similarity Removed Modified Test Suit: A Modified

Test Suit from previous phase will be imported in

this phase for fault reduction.

Execution and Analysis: In generated time monitor,

execute the test cases on the system, capturing

outputs in the means of a log and any faults or

exceptions that occur.

Fault Detection Criteria: Determine criteria for

identifying whether or not the test case execution has

identified a fault such as a bug, crash, violation of

expected behavior, or any other relevant deviation

from normal operation. Using different

methodologies (equation-based analysis, heuristic

rule-based).

Fitness Function: Create a “fitness function” that

captures the likelihood of a test case exposing a fault

based on factors such as system behavior, code

coverage, execution paths exercised and critical

paths exercised.

Search Algorithm: adopting a search-based

algorithm that iteratively picks and refines the set of

test cases. Genetic algorithms, simulated annealing,

particle swarm optimization, and other metaheuristic

techniques are often applied with this aim. The

algorithm should work to maximize the fitness

function while minimizing the number of test cases.

This effort can require a significant amount of

computational horsepower (and possibly cloud

https://doi.org/10.21123/bsj.2024.9710

Page | 806

2024, 21(2 Special Issue): 0802-0811

https://doi.org/10.21123/bsj.2024.9710

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

computing) when dealing with large, real-world

systems.

Faulty Test Cases Elimination: As far as how the

algorithm works, once the process begins, it selects

which test cases to include in a given round based on

their probability to identify faults not bothering with

those that wouldn’t make a significant contribution

to fault detection in review.

Iterative Refinement: Proceeding from there, the

algorithm iterates, further refining the set of test

cases by considering the feedback received from

their execution on the system. As the process

continues, the algorithm further learns how to carve

away at test cases that are likely to be at fault.

Stopping Criteria: The search algorithm should

have some stopping criteria. This could be a

maximum number of iterations, a convergence

threshold, or other factors indicating that the

algorithm has arrived at a satisfactory solution.

Validation and Review: Once the search algorithm

is complete, the selected test cases will still require

validation. This can be done through manual

assessment or other automated validation techniques

to ensure that the chosen test cases are a good

indication of fault detection effectiveness.

Integration with Testing Process: Finally, integrate

the selected test cases into the overall testing process.

The fast tests should become a part of an automated

testing suite if one exists, but it might also be

valuable to keep the tests outside of the automated

suite as an additional check.

Proposed Test Case Prioritization using History

Based Approach

In this phase, we perform Test case prioritization

using a history-based approach. A modified test suit

with similarity and faulty test case removed will be

used. Test case prioritization using a history-based

approach phase utilizes information from prior test

executions to determine the sequence in which they

should be executed in upcoming testing cycles. This

strategy focuses on test cases that have historically

been more likely to find faults or failures to enhance

testing efficiency. The history-based test case

prioritization process works as follow;

Test Execution and Recording: First, the system

under test must be exercised by the test suite and

during the execution of each test, all pertinent data

like execution times, test case outcomes (pass/fail)

and possibly any other data that may give greater

insight into the behavior of the system is recorded.

Data Collection and Analysis: Next, you have to

take the historical data collected during multiple

executions; such as execution times, failure rates,

and possibly other metrics like code coverage or

specific types of defects uncovered.

Feature Extraction: This comes in two pieces: First,

you need to extract features from the historical data

that will allow you to tell different teset cases apart.

For example, you could figure out what the average

execution time, failure rate, etc is for every test case,

or how often one type of defect was found.

Prioritization Strategy: Then, choose a strategy to

prioritize the tests, based on historical data! There are

several you can use, based on the project's goals and

priorities, such as:

Failure-based: Report on test case runs, analyze

how many times each test case has historically

resulted in failed unit tests. This approach assumes

that if a test case has failed before i.e., on multiple

runs it’s more likely to reveal issues in the future.

Execution time-based: Prioritize test cases with the

fastest historical execution times. This aims to

complete testing quicker by running quicker test

cases first.

Combination: Combine multiple factors, such as

failure rate and execution time, into a weighted

formula to generate an overall prioritization score for

each test case.

Normalization: Normalize the extracted features to

ensure that they are on the same scale. This step is

important when using weighted combinations of

features.

Scoring and Ranking: Combine multiple factors,

such as bugs’ past-failure rate and the amount of time

it takes to execute the tests, into a weighted formula

to generate an overall prioritization score for each

test case.

https://doi.org/10.21123/bsj.2024.9710

Page | 807

2024, 21(2 Special Issue): 0802-0811

https://doi.org/10.21123/bsj.2024.9710

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

Sorting and Execution: Normalize the features that

you just extracted to ensure that they are all on the

same scale. This step is important because you’re

going to use a weighted combination of the features

and you want to be comparing apples to apples.

Iterative Improvement: As new test execution data

becomes available, update the historical records and

adjust the prioritization strategy accordingly. This

iterative process helps refine the test case

prioritization over time.

Feedback Loop: Continue to assess the history-

based approach’s efficacy. Keep an eye on whether

the strategy results in quicker defect detection,

shorter testing durations, or other process

enhancements.

Adaptation: Be open to adjusting the prioritization

strategy based on changing project requirements,

software updates, and evolving testing goals.

History-based test case prioritization leverages:
The insight gained from previous testing experiences

to make more informed decisions about the order in

which test cases are executed. By focusing on test

cases that have historically been more effective at

finding issues

Proposed Method overview

Initially, the experiment setup did not

involve many test cases, but after the experiment was

hybridized, the experiment required two test plans

(TP) for merging and prioritizing. This process was

initially executed once per each test case input, as

shown in Fig.2. Then, a general Hybrid process was

proposed to execute all subsequent releases of test

cases created by TCP on similarity-based and TCP

on fault based, as illustrated in Fig.3.

In the initial run, test cases (TCs) are

extracted from a vast, indexed database of textual

TCs. The input for the TC repository is obtained from

the experimental dataset, which, in this case, was

sourced from a software infrastructure repository

(SIR). Each TC has a single input string that is

organized to run the system.

The dataset for the secondary experiment includes

both test inputs and a fault matrix. In this experiment,

these outputs are utilized in their entirety. The test

inputs undergo a similarity process, while the fault

matrix is subjected to a fault analysis. The generated

test plan is subsequently consolidated and organized

based on a combination of relevance criteria,

specifically weighted scoring. The weighted scoring

is measured according to the scale set by the test

engineer. The process begins with prioritization and

ends with selection as shown in Fig.3.

 Test Plan creation based on similarity with

prioritization technique

 Creating a test plan based on a prioritizing

technique error

 Utilize a weight-based strategy to hybridize

and apply a selection of the Test Plans

produced by the two prior processes.

https://doi.org/10.21123/bsj.2024.9710

Page | 808

2024, 21(2 Special Issue): 0802-0811

https://doi.org/10.21123/bsj.2024.9710

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

Figure 3. Initialized hybrid setup

Results and Discussion

 The process of the experiment has been

elaborated on previously. This study will analyze and

compare its result with the existing approach,

including a single approach technique.

 The applicability of the proposed solution in

the experiment is presented. The result of this

experiment is described in detail in the sub-section.

We have conducted tests on two test suits with 5,10,

15, and 20 test cases in each TS, as shown in Fig.4.

and Fig.5.

Figure 4. Redundancy, cost & time ratio when test cases = (5, 10)

https://doi.org/10.21123/bsj.2024.9710

Page | 809

2024, 21(2 Special Issue): 0802-0811

https://doi.org/10.21123/bsj.2024.9710

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

It is possible to skip certain studies due to the

presence of unclear aspects in the field of regression

test case selection and test case prioritization. These

gray areas pertain to topics like the impact of solution

techniques and the interplay between test case

selection and prioritization, as well as the

connections between testing techniques and testing

levels. This study has ties to various communities

within the software testing domain, including quality

assurance professionals, information systems

experts, those involved in service-oriented

architecture (SOA), and individuals engaged in

testing applications based on object-oriented

principles.

An improved method for regression testing

to choose and order the test suite To increase fault

detection ability and coverage, persistent uncertainty

in quality parameter selection and prioritization is

necessary to identify relevant and sensitive quality

factors like cost, time, and redundancy, which put the

business of the software industry at stake. Therefore,

the Fault & coverage ratio results when test cases are

5, 10, 15, and 20 are shown in Fig.5.

Figure 5. Fault & coverage ratio when test cases = (5. 10, 15, 20)

Conclusion

 The primary objective of the Hybridized

Framework ETCPM is to identify and select only

those modified test cases that play a crucial role in

determining quality parameters like time, cost, and

efficiency. This approach aims to enhance regression

testing techniques by excluding redundant and faulty

test cases, thereby reducing the overall test size. The

proposed hybrid method offers several advantages,

including a decrease in execution time and an

enhancement in fault detection capabilities. As for

https://doi.org/10.21123/bsj.2024.9710

Page | 810

2024, 21(2 Special Issue): 0802-0811

https://doi.org/10.21123/bsj.2024.9710

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

future research directions, there is a need for an

improved regression testing approach that places

more emphasis on performance, accuracy, security,

and the reusability of regression testing processes.

Acknowledgment

This work was supported in part by the

Research Management Center (RMC), Universiti

Teknologi Malaysia (UTM), and the Ministry of

Higher Education Malaysia (MOHE) through the

UTM High Impact Research (UTMHR) grant

scheme under (Vot number

Q.J130000.2451.08G55).

Authors’ Declaration

- Conflicts of Interest: None.

- We hereby confirm that all the Figures and Tables

in the manuscript are ours. Furthermore, any

Figures and images, that are not ours, have been

included with the necessary permission for re-

publication, which is attached to the manuscript.

- Authors sign on ethical consideration’s approval.

- Ethical Clearance: The project was approved by

the local ethical committee in University of

Teknologi Malaysia Johor Bahru approved the

project.

Authors’ Contribution Statement

M.A. S. Methodology, Code implementation,

Writing.W. M.N. W.K: Supervision,

Conceptualization, Reviewing. Writing an original

draft, J. A. Investigation, Reviewing. Editing,

Supervision,N. I. Investigation, Editing.

References

1. Muhammad H., Imran G., Muhammad F. P., and

Seung R. J. A comprehensive review on regression test

case prioritization techniques for web services. KSII

Trans. Internet Inf. Syst. 2020; Vol. 14:No.5 .

https://doi.org/10.3837/tiis.2020.05.001

2. Khatibsyarbini, M., et al., Test case prioritization

approaches in regression testing: A systematic

literature review. Inf Softw Technol. 2018; 93: p. 74-

93. https://doi.org/10.1016/j.infsof.2017.08.014
3. Z. Yuan, Y. Lou, M. Liu, S. Ding, K. Wang, Y. Chen,

and X. Peng.No more manual tests? evaluating and

improving chatgpt for unit test generation. arXiv

preprint arXiv:2305.04207. 2023.

https://doi.org/10.1145/3395363.3397383

4. Mukherjee R. and Patnaik K. A survey on different

approaches for software test case prioritization. J. King

Saud Univ. Comput. Inf. Sci. Oct.2018;

S1319157818303616.

https://doi.org/10.1016/j.jksuci.2018.09.005

5. M. I. Younis, “DEO: a dynamic event order strategy

for T-way sequence covering array test data

generation,” Baghdad Sci. J. 2020;vol. 17, no. 2: p.

575, May.
https://doi.org/10.21123/bsj.2020.17.2.0575

6. Bukhsh FA, Bukhsh ZA, Daneva M. A systematic

literature review on requirement prioritization

techniques and their empirical evaluation. Comput.

Stand. Interfaces. 2020;69:103389.

https://doi.org/10.1016/j.csi.2019.103389

7. Younis, M.I., Alsewari, A.R.A., Khang, N.Y., Zamli,

K.Z., CTJ: Input-output based relation combinatorial

testing strategy using jaya algorithm. Baghdad Sci.

J. 2020;17 (3): pp. 1002-1009.

https://doi.org/10.21123/BSJ.2020.17.3(SUPPL.).100

2

8. Rongqi Pan, Mojtaba Bagherzadeh, Taher A. Ghaleb,

and Lionel Briand. 2022. Test case selection and

prioritization using machine learning: A systematic

literature review. Empir. Softw. Eng. 2022;27, 2: 1–

43. https://doi.org/10.1007/s10664-021-10066-6

9. Ali, S., et al., Enhanced regression testing technique

for agile software development and continuous

integration strategies. Softw. Qual. J. .2020; Vol. 28:

p 397–423. https://doi.org/10.1007/s11219-019-

09463-4

10. Pandey, A. and S. Banerjee.Test Suite Minimization in

Regression Testing Using Hybrid Approach of ACO

and GA. IJAMC. 2018; 9. https://doi.org/

10.4018/IJAMC.2018070105

11. Agrawal, A.P. and A. Kaur, A comprehensive

comparison of ant colony and hybrid particle swarm

optimization algorithms through test case selection, in

https://doi.org/10.21123/bsj.2024.9710
https://doi.org/10.1016/j.infsof.2017.08.014
https://doi.org/10.1145/3395363.3397383
https://doi.org/10.21123/bsj.2020.17.2.0575
https://doi.org/10.1007/s10664-021-10066-6
https://doi.org/10.1007/s11219-019-09463-4
https://doi.org/10.1007/s11219-019-09463-4

Page | 811

2024, 21(2 Special Issue): 0802-0811

https://doi.org/10.21123/bsj.2024.9710

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

Data engineering and intelligent computing. 2018,

Springer. p. 397-405. https://doi.org/10.1007/978-

981-10-3223-3_38

12. Chen et al., Chen J., Shang W., Shihab E., Perfjit: Test-

level just-in-time prediction for performance

regression introducing commits IEEE Trans. Softw.

Eng. 2020; p. 1.

https://doi.org/10.1109/TSE.2020.3023955

13. Singhal, S.; Jatana, N.; Subahi, A.F.; Gupta, C.;

Khalaf, O.I.; Alotaibi, Y. Fault Coverage-Based Test

Case Prioritization and Selection Using African

Buffalo Optimization. Comput. Mater. Contin. 2023;

74: 6755–

6774.https://doi.org/10.32604/cmc.2023.032308

14. Q. Zheng, Z. Ou, L. Liu, T. Liu, A novel method on

software structure evaluation, in: Proceedings of the

2nd IEEE International Conference on Software

Engineering and Service, ICSESS ’11, IEEE.2011; pp.

251–254. https://doi.org/10.1016/j.jss.2020.110539

15. Magalhães, C., et al., HSP: A hybrid selection and

prioritisation of regression test cases based on

information retrieval and code coverage applied on an

industrial case study. J. Syst. Softw. 2020; 159: p.

110430. https://doi.org/10.1016/j.jss.2019.110430

 الاختبار المشابهة والمعيبة في اختبار الانحدارإطار عمل هجين لاستبعاد حالات

 نوريني إبراهيم ،محمد عاصم صديق، وان م.ن. وان قادر، جوهانا أحمد

 كلية الحاسبات، الجامعة التكنولوجية، جوهور باهرو، ماليزيا.

 ةالخلاص

 أو التحديثات الجديدة لنظام البرامج التي لا تؤدي إلى حدوثيعد اختبار الانحدار مرحلة حاسمة في تطوير البرامج التي تضمن أن التغييرات

 عيوب أو تؤثر سلباً على الوظائف الحالية.

ومع ذلك، مع زيادة تعقيد أنظمة البرمجيات، يمكن أن تصبح كمية حالات الاختبار في مجموعة الانحدار كبيرة، مما يؤدي إلى زيادة وقت

إلى ذلك، فإن وجود حالات اختبار زائدة عن الحاجة ومعيبة يمكن أن يزيد من إعاقة فعالية إجراء الاختبار واستهلاك الموارد. بالإضافة

 اختبار الانحدار.

. ETCPMولمواجهة هذه التحديات، تقدم هذه الدراسة إطارًا هجيناً جديداً لاستبعاد حالات الاختبار المشابهة والمعيبة في اختبار الانحدار

تقنيات تحليل التعليمات البرمجية الآلية وبيانات تنفيذ الاختبار التاريخي لتحديد وإزالة حالات الاختبار المتكررة يستفيد إطار العمل من

يقدم فوائد كبيرة في تقليل وقت الاختبار، ETCPMوالمتشابهة والمعيبة من مجموعة الانحدار. توضح النتائج التجريبية أن إطار عمل

زيز الجودة الشاملة لمجموعة اختبار الانحدار. من خلال الاستبعاد الذكي لحالات الاختبار المماثلة والمعيبة، وتحسين تخصيص الموارد، وتع

على تمكين فرق تطوير البرمجيات من تحقيق اختبار انحدار أسرع وأكثر موثوقية، مما يؤدي إلى تسريع دورات تسليم ETCPMيعمل

 .البرامج وتحسين رضا المستخدم النهائي.

 اختبار الانحدار، تحديد أولويات حالة الاختبار، اختيار حالة الاختبار، جودة البرمجيات، صيانة البرمجيات. الكلمات المفتاحية:

https://doi.org/10.21123/bsj.2024.9710
https://doi.org/10.1007/978-981-10-3223-3_38
https://doi.org/10.1007/978-981-10-3223-3_38
https://doi.org/10.1109/TSE.2020.3023955
https://doi.org/10.1016/j.jss.2020.110539

