

Page | 584

2024, 21(2 Special Issue): 0584-0591

https://doi.org/10.21123/bsj.2024.9454

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

Containerized Event-Driven Microservice Architecture

Siti Zulaikha Mohd Zuki* , Radziah Mohamad , Nor Azizah Saadon

Faculty of Computing, Universiti Teknologi Malaysia, Johor, Malaysia.

*Corresponding Author.

PARS2023: Postgraduate Annual Research Seminars 2023.

Received 28/09/2023, Revised 10/02/2024, Accepted 12/02/2024, Published 25/02/2024

 © 2022 The Author(s). Published by College of Science for Women, University of Baghdad.

This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International

License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Introduction

The popularity of microservice architecture rises in

2014 after Netflix shared the success story of its

system migration from monolithic architecture to

microservice architecture in 20091. Other top global

companies, such as Amazon and Uber, joining the

system migration further prove the competency of

microservice architecture in handling larger

applications. Moreover, the lightweight nature of a

microservice architecture, its self-management

ability, and its scalability show it to be an effective

technique to manage complex large-scale systems2.

Microservice architecture breaks down the business

capabilities of an application into smaller

components known as microservices with a loosely

coupled structure for a more rapid, reliable, and

flexible delivery of tasks3,4. In addition,

microservices in an application are independent of

each other, allowing the development, management,

and maintenance processes to be done separately by

different teams5–7. This improves productivity as

development processes can be done in parallel by

the teams, and maintenance is more effective with

different teams focusing on specific microservices

instead of an entire application.

However, microservice architecture is not without

challenges and issues. Some examples of commonly

addressed issues in microservice architecture are

data consistency, communication between

microservices, and runtime error handling5,8,9. In

cloud computing, communication issues can be

Abstract

Microservice architecture offers many advantages, especially for business applications, due to its

flexibility, expandability, and loosely coupled structure for ease of maintenance. However, there are

several disadvantages that stem from the features of microservices, such as the fact that microservices

are independent in nature can hinder meaningful communication and make data synchronization more

challenging. This paper addresses the issues by proposing a containerized microservices in an

asynchronous event-driven architecture. This architecture encloses microservices in containers and

implements an event manager to keep track of all the events in an event log to reduce errors in the

application. Experiment results show a decline in response time compared to two other benchmark

architectures, as well as a lessening in error rate.

Keywords: Container environment, Error handling, Event-driven architecture, Event manager,

Microservice

https://doi.org/10.21123/bsj.2024.9454
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0008-2874-1165
mailto:szulaikha7@graduate.utm.my
https://orcid.org/0000-0003-4075-9604
mailto:radziahm@utm.my
https://orcid.org/0000-0003-2017-9952
mailto:azizahsaadon@utm.my

Page | 585

2024, 21(2 Special Issue): 0584-0591

https://doi.org/10.21123/bsj.2024.9454

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

addressed with load balancing10 or managing

service level agreement11, but there are limitations

in adding functionalities to microservice application

as to not overwhelm its complexity.

To minimize dependencies, each microservice gets

its own individual setup, such as a database and

logical functions. This makes retrieving interrelated

data more challenging, especially when

microservice update its individual database only at

the end of a query-response process12. The

relationships between microservices are typically in

a topological graph where microservices are

connected in a chain of processes and some chains

share similar microservices5,13. Furthermore, this

also indicates that answering a client’s queries

spans multiple microservices.

To address the challenges and issues above, this

paper implements containerized microservices in an

asynchronous event-driven architecture. The key

ideas of this paper are as follows:

 Implementation of an event manager as an event

and message broker with an event log to keep

track of every event that occurred in the

application and record the relationships between

microservices in chains and the possible events

that are related to the microservices.

 The containerization of the microservices further

separates individual databases from each other.

With the implementation of the event log, the

event manager can easily differentiate one

database from the other and perform data

updates more efficiently.

 By keeping track of the event and the

microservices that are responsible for it, the

event manager needs to notify only the

associated microservices instead of blasting the

message to every microservice in the

application.

The remainder of this paper is organized as follows:

the related work describes the different ways similar

works address the issues, the methodology

illustrates the proposed architecture design and

finally, the result and discussion examine the results

from the experiments.

Related Work

Event-Driven Architecture for Microservices

Event-driven architecture is a system where

microservices exchange information or data with

each other through a publish-and-listen event. It

absorbs information into a message broker, usually

known as an event bus, and then broadcasts it to the

listening microservices14. Fig. 1 illustrates the

publish-and-listen event in an event-driven

architecture in a microservice application.

Singh et al.15 introduce a message streaming data

driven microservice system using an event-driven

architecture. It is a direct messaging system with a

control to monitor the message queue to improve

latency. However, it does not address the handling

of network failures. Surantha et al.16 develop an

intelligent sleep monitoring system using

microservices and event-driven architecture. The

system acquires sleeping data through sensor

wearables and records the data in a database. The

implementation of a message broker increases

throughput and decreases response time.

Nevertheless, there is no event log to trace the

events in the event of a network failure.

Containerization of Microservices

Containers are a semi-isolated environment that

keeps its host separated from other entities in the

application but can still communicate with them.

Containerization is not a new concept, though it

thrives after it starts getting implemented in

Service-Oriented Architecture (SOA) which then

subsequently becomes synonymous with

microservice architectures17.

https://doi.org/10.21123/bsj.2024.9454

Page | 586

2024, 21(2 Special Issue): 0584-0591

https://doi.org/10.21123/bsj.2024.9454

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

Figure 1. Publish-and-listen event in an event-driven architecture in microservice application.

Containers are pertinent to effective load balancing,

efficient autoscaling, and scheduling5,7. An example

of work involving containers is by Matani et al.18,
which involves the allocation of resources in a grid

environment by using replication techniques to

reduce cost and execution time. Another work is by

Zhou et al.19 where the scheduling algorithm that

comes with containerization smooths the real-time

workflow between tasks and processes. Finally, Yu

et al.6 use the redundancy strategy in a container

environment to further optimize the dependability

of workflow. These works show that using

containers to enclose microservices helps smooth

the workflow and manage the scheduling of an

asynchronous microservice architecture.

Methodology

To address the issues with data consistency,

communication between microservices, and runtime

error handling, this paper implements containerized

microservices in an asynchronous event-driven

architecture. Fig. 2 illustrates the proposed

architecture. The microservices are enclosed in

separate, individual containers, where each

container publishes and listens to the message

broker hosted by an event manager. The event

manager also keeps track of every exchange by

keeping a record in an event log. Kubernetes with

Docker application is used to set up the container

environment and orchestration system, while

Apache Kafka is used as a means of communication

between the microservices and the event manager.

Figure 2. Containerized microservices in an asynchronous event-driven architecture.

https://doi.org/10.21123/bsj.2024.9454

Page | 587

2024, 21(2 Special Issue): 0584-0591

https://doi.org/10.21123/bsj.2024.9454

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

Figure 3. The TrainTicket20 system.

The proposed architecture is tested on a

TrainTicket20 system which is illustrated in Fig. 3.

Table 1 illustrates an excerpt of an event log based

on the TrainTicket system. The first event 00001 is

a publish event where the user requests a Ticket

rebook. The request is a success, so there is no need

for a retry. In the second event 00002, the event is a

listen event where the microservice should receive

the request and return a response to the user. The

event status is dropped as there is an error in the

network, so the system will attempt a retry. The log

keeps track of the events to allow retries of dropped

events in case of transient errors and prevent any

event from being missed by the system.

Table 1. Example of event log based on TrainTicket System.
Timestamp EventID EventType MS_ID Status Retry

20.06.23 11.11 00001 Publish Ticket_rebook Success False

20.06.23 11.12 00002 Listen Ticket_rebook Dropped True

Even though the proposed architecture tracks and

allows retries for dropped requests due to transient

errors, there is a limitation to the number of retries

that can be attempted. This is to avoid overloaded

requests, which can lead to a denial of service

(DOS).

Results and Discussion

The proposed architecture is tested using a set of

randomly pre-generated 500 request samples, and

the result is compared with two other architectures:

an event-driven architecture by Rahmatulloh et al.14

and a baseline API-driven architecture, using the

same set of request samples. To determine the

efficiency of the architecture with regard to the

user’s request and the response received, the

response time is recorded. Fig. 4 and Table 2 show

the result of the proposed architecture compared to

the other two architectures.

Table 2. The response time of the proposed architecture compared to the event-driven architecture

and API-driven architecture.

Total Request
Proposed Architecture

(ms)

Event-driven Architecture

(ms)

API-driven Architecture

(ms)

100 1889 2096 2247

200 2111 2905 3852

300 2642 3277 3895

400 3519 4433 5215

500 4820 5805 6859

https://doi.org/10.21123/bsj.2024.9454

Page | 588

2024, 21(2 Special Issue): 0584-0591

https://doi.org/10.21123/bsj.2024.9454

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

Figure 4. The response time of the proposed architecture compared to the event-driven architecture

and API-driven architecture.

As can be seen in Fig. 4, the proposed architecture

manages to record the lowest response time in all

request increments compared to the other two

benchmark architectures. The API-driven

architecture uses APIs as a means of

communication between microservices, whereas the

event-driven architecture does not use any event

logs to keep track of the events. This shows the

efficiency of the event log at keeping track of the

publish-and-listen events and successfully

responding to the request at a low response time.

Next, Fig. 5 and Table 3 show the error rate for the

total requests tested for all three architectures at

increments of 100 requests each. As can be seen in

the figure, the proposed architecture shows a huge

difference in error rate compared to the benchmark

architectures. This is due to records of event status

and retry status for every event registered by the

event manager. The event log ensures that no event

is amiss, even in the event of a network failure.

Table 3. The error rate of the proposed architecture compared to the event-driven architecture and

API-driven architecture.

Total Request
Proposed Architecture

(%)

Event-driven Architecture

(%)

API-driven Architecture

(%)

100 0 0 0

200 4.6 7 11

300 5.1 10.33 11.3

400 4.9 10.5 9.25

500 5 4 11.2

1000

2000

3000

4000

5000

6000

7000

100 200 300 400 500

M
ili

se
co

n
d

s
(m

s)

Total Request

Proposed Event-driven API-driven

https://doi.org/10.21123/bsj.2024.9454

Page | 589

2024, 21(2 Special Issue): 0584-0591

https://doi.org/10.21123/bsj.2024.9454

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

Figure 5. The error rate of the proposed architecture compared to the event-driven and API-driven

architecture.

Conclusion

Based on the results obtained from the experiments,

the proposed containerized microservices in an

asynchronous event-driven architecture show

promising results in error handling and meaningful

communication between microservices. The event

log proves to be efficient in tracking events and the

microservices related to them, subsequently

lowering the response time, and improving the

user’s experience. However, the event log can be

further improved to also monitor the data exchange

between microservices, while the event manager

can facilitate individual database updates in real-

time.

Acknowledgment

This research has been supported by the Ministry of

Higher Education (MOHE) through the

Fundamental Research Grant Scheme

(FRGS/1/2021/ICT01/UTM/02/1).

Authors’ Declaration

- Conflicts of Interest: None.

- We hereby confirm that all the Figures and

Tables in the manuscript are ours. Furthermore,

any Figures and images, that are not ours, have

been included with the necessary permission for

re-publication, which is attached to the

manuscript.

- Ethical Clearance: The project was approved by

the local ethical committee in Universiti

Teknologi Malaysia.

Authors’ Contribution Statement

The authors S.Z.M.Z, R.M and N.A.S contributed to

the design and implementation of the research.

Author S.Z.M.Z conducted the experiments, the

analysis of the results and the manuscript writing.

R.M and N.A.S verified the experiment result,

0

2

4

6

8

10

12

100 200 300 400 500

Er
ro

r
R

at
e

(%
)

Total Request

Proposed Event-driven API-driven

https://doi.org/10.21123/bsj.2024.9454

Page | 590

2024, 21(2 Special Issue): 0584-0591

https://doi.org/10.21123/bsj.2024.9454

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

proofread, and approved the final version of the manuscript.

References

1. Blinowski G, Ojdowska A, Przybylek A. Monolithic

vs. Microservice Architecture: A Performance and

Scalability Evaluation. IEEE Access. 2022

Feb;10:20357–74.

https://doi.org/10.1109/ACCESS.2022.3152803

2. Zhang S, Zhang M, Ni L, Liu P. A Multi-Level Self-

Adaptation Approach For Microservice Systems.

ICCCBDA. 2019;498–502.

https://doi.org/10.1109/ICCCBDA.2019.8725647

3. He H, Su L, Ye K. GraphGRU: A Graph Neural

Network Model for Resource Prediction in

Microservice Cluster. ICPADS. 2023;499–506.

https://doi.org/10.1109/ICPADS56603.2022.00071

4. Liu H, Zhang W, Zhang X, Cao Z, Tian R. Context-

Aware and QoS Prediction-based Cross-Domain

Microservice Instance Discovery. ICSESS . 2022;30–

4.

https://doi.org/10.1109/ICSESS54813.2022.9930241

5. Wan F, Wu X, Zhang Q. Chain-Oriented Load

Balancing in Microservice System. WCCCT.

2020;10–4.

https://doi.org/10.1109/WCCCT49810.2020.9169996

6. Yu X, Wu W, Wang Y. Dependable Workflow

Scheduling for Microservice QoS Based on Deep Q-

Network. ICWS. 2022;240–5.

https://doi.org/10.1109/ICWS55610.2022.00045

7. Hossen MR, Islam MA, Ahmed K. Practical Efficient

Microservice Autoscaling with QoS Assurance.

HPDC. 2022;240–52.

https://doi.org/10.1145/3502181.3531460

8. Gan Y, Liang M, Dev S, Lo D, Delimitrou C. Sage:

Practical and scalable ML-driven performance

debugging in microservices. ASPLOS. 2021;135–51.

https://doi.org/10.1145/3445814.3446700

9. Chen J, Liu F, Jiang J, Zhong G, Xu D, Tan Z, et al.

TraceGra: A trace-based anomaly detection for

microservice using graph deep learning. Comput

Commun. Elsevier B.V. 2023 Apr 15;204:109–17.

https://doi.org/10.1016/j.comcom.2023.03.028

10. Abed MM, Younis MF. Developing load balancing

for IoT - Cloud computing based on advanced firefly

and weighted round robin algorithms. Baghdad Sci J.

2019;16(1):130–9.

https://doi.org/10.21123/bsj.2019.16.1.0130

11. Kumar S, Kumar N. Conceptual service level

agreement mechanism to minimize the SLA violation

with SLA negotiation process in cloud computing

environment. Baghdad Sci J. 2021 Jun 1;18:1020–9.

https://doi.org/10.21123/bsj.2021.18.2(Suppl.).1020

12. Vohra N, Kerthyayana Manuaba IB. Implementation

of REST API vs GraphQL in Microservice

Architecture. ICIMTech . 2022;45–50.

https://doi.org/10.1109/ICIMTech55957.2022.991509

8

13. Lan Y, Fang L, Zhang M, Su J, Yang Z, Li H. Service

dependency mining method based on service call

chain analysis. ICSS. 2021;84–9.

https://doi.org/10.1109/ICSS53362.2021.00021

14. Rahmatulloh A, Nugraha F, Gunawan R, Darmawan

I. Event-Driven Architecture to Improve Performance

and Scalability in Microservices-Based Systems.

ICADEIS. 2022.

https://doi.org/10.1109/ICADEIS56544.2022.100373

90

15. Singh A, Singh V, Aggarwal A, Aggarwal S. Event

Driven Architecture for Message Streaming data

driven Microservices systems residing in distributed

version control system.ICISTSD. 2022;308–12.

https://doi.org/10.1109/ICISTSD55159.2022.100103

90

16. Surantha N, Utomo OK, Lionel EM, Gozali ID, Isa

SM. Intelligent Sleep Monitoring System Based on

Microservices and Event-Driven Architecture. IEEE

Access. 2022;10:42055–66.

https://doi.org10.1109/ACCESS.2022.3167637

17. Mulahuwaish A, Korbel S, Qolomany B. Improving

datacenter utilization through containerized service-

based architecture. J Cloud Comput; 2022 Dec

1;11(1). https://doi.org/10.1186/s13677-022-00319-0

18. Matani A, Naji HR, Motallebi H. A Fault-Tolerant

Workflow Scheduling Algorithm for Grid with Near-

Optimal Redundancy. J Grid Comput. 2020 Sep

1;18(3):377–94. https://doi.org/10.1007/s10723-020-

09522-2

19. Zhou J, Sun J, Zhang M, Ma Y. Dependable

Scheduling for Real-Time Workflows on Cyber-

Physical Cloud Systems. IEEE Trans Industr Inform.

2021 Nov 1;17(11):7820–9.

https://doi.org/10.1109/TII.2020.3011506

20. Madi T, Esteves-Verissimo P. A Fault and Intrusion

Tolerance Framework for Containerized

Environments: A Specification-Based Error Detection

Approach. SRMC. 2022;1–8.

https://doi.org/10.1109/SRMC57347.2022.00005

https://doi.org/10.21123/bsj.2024.9454
https://doi.org/10.1109/ACCESS.2022.3152803
https://doi.org/10.1109/ICCCBDA.2019.8725647
https://doi.org/10.1109/ICPADS56603.2022.00071
https://doi.org/10.1109/ICSESS54813.2022.9930241
https://doi.org/10.1109/WCCCT49810.2020.9169996
https://doi.org/10.1109/ICWS55610.2022.00045
https://doi.org/10.1145/3502181.3531460
https://doi.org/10.1145/3445814.3446700
https://doi.org/10.1016/j.comcom.2023.03.028
https://doi.org/10.21123/bsj.2019.16.1.0130
https://doi.org/10.21123/bsj.2021.18.2(Suppl.).1020
https://doi.org/10.1109/ICIMTech55957.2022.9915098
https://doi.org/10.1109/ICIMTech55957.2022.9915098
https://doi.org/10.1109/ICSS53362.2021.00021
https://doi.org/10.1109/ICADEIS56544.2022.10037390
https://doi.org/10.1109/ICADEIS56544.2022.10037390
https://doi.org/10.1109/ICISTSD55159.2022.10010390
https://doi.org/10.1109/ICISTSD55159.2022.10010390
https://doi.org10.1109/ACCESS.2022.3167637
https://doi.org/10.1186/s13677-022-00319-0
https://doi.org/10.1007/s10723-020-09522-2
https://doi.org/10.1007/s10723-020-09522-2
https://doi.org/10.1109/TII.2020.3011506
https://doi.org/10.1109/SRMC57347.2022.00005

Page | 591

2024, 21(2 Special Issue): 0584-0591

https://doi.org/10.21123/bsj.2024.9454

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

 بنية الخدمات الصغيرة المعتمدة على الأحداث

 ستي زليخة محمد زوكي، راضية محمد، نور عزيزة سعدون

 .كلية الحاسبات، الجامعة التكنولوجية الماليزية، جوهور، ماليزيا

 ةالخلاص

لتطبيقات الأعمال، نظرًا لمرونتها وقابليتها للتوسيع وبنيتها المترابطة بشكل غير توفر بنية الخدمات الصغيرة العديد من المزايا، خاصة

محكم لسهولة الصيانة. ومع ذلك، هناك العديد من العيوب التي تنبع من ميزات الخدمات الصغيرة، مثل حقيقة أن الخدمات الصغيرة مستقلة

انات أكثر صعوبة. تتناول هذه الورقة المشكلات من خلال اقتراح خدمات بطبيعتها يمكن أن تعيق التواصل الهادف وتجعل مزامنة البي

مصغرة مضمنة في حاوية في بنية غير متزامنة تعتمد على الأحداث. تحتوي هذه البنية على خدمات صغيرة في حاويات وتقوم بتنفيذ مدير

ظهر نتائج التجربة انخفاضًا في وقت الاستجابة مقارنةً الأحداث لتتبع جميع الأحداث في سجل الأحداث لتقليل الأخطاء في التطبيق. ت

 بمبنيين معياريين آخرين، بالإضافة إلى انخفاض في معدل الخطأ.

 .بيئة الحاوية، معالجة الأخطاء، البنية المبنية على الأحداث، مدير الأحداث، الخدمات الصغيرة الكلمات المفتاحية:

https://doi.org/10.21123/bsj.2024.9454

