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Abstract

When optimizing the performance of neural network-based chatbots, determining the optimizer is one
of the most important aspects. Optimizers primarily control the adjustment of model parameters such
as weight and bias to minimize a loss function during training. Adaptive optimizers such as ADAM
have become a standard choice and are widely used for their invariant parameter updates' magnitudes
concerning gradient scale variations, but often pose generalization problems. Alternatively, Stochastic
Gradient Descent (SGD) with Momentum and the extension of ADAM, the ADAMW, offers several
advantages. This study aims to compare and examine the effects of these optimizers on the chatbot
CST dataset. The effectiveness of each optimizer is evaluated based on its sparse-categorical loss
during training and BLEU in the inference phase, utilizing a neural generative attention-based additive
scoring function. Despite memory constraints that limited ADAMW to ten epochs, this optimizer
showed promising results compared to configurations using early stopping techniques. SGD provided
higher BLEU scores for generalization but was very time-consuming. The results highlight the
importance of finding a balance between optimization performance and computational efficiency,
positioning ADAMW as a promising alternative when training efficiency and generalization are
primary concerns.
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Introduction

Integrating artificial intelligence (Al) through the
use of neural networks is a widely used approach in
various fields such as object and speech recognition,
healthcare, and business, including chatbots.
Chatbots based on neural networks typically aim to

find the best function approximation by finding
network parameters that minimize the error function
during training data'. An error function measures
how accurate the output of a model is compared to
the actual output (target values). To improve the
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output (response), such parameters (weights) have
to be optimized using optimization functions. Such
parameters can be learned by training on labeled
data (target values). Thus, the error is measured by
comparing the values for each prediction y with the
actual output (target values). The measurement of
this error is associated with a loss or cost function®.
To find an optimal weighting for the minimum loss
function, the backpropagation algorithm can be
used by adjusting the gradients of the loss function.
Backpropagation is an algorithm for computing
gradients from the output using the chain rule® and
is an example of optimization techniques for
training neural models based on gradients.
However, the use of an algorithm based on finding
gradients is very limited in its ability to find
solutions for generalization. This limitation has led
to the investigation of other optimization algorithms
using decoupled decay regularization techniques
such as ADAM and ADAMW, which are known for
their superior performance. The efficiency of these

chatbots in simulating human dialogues largely
depends on the optimal tuning of the neural network
weights, which is usually achieved by gradient-
based algorithms such as backpropagation.

The optimizer determines how the network is
updated based on the loss function. An optimizer
concatenates the loss function and the model
parameters by updating the model in response to the
output of the loss function. Optimizers help
minimize the loss function. There are two types of
optimizers: gradient descent-based and adaptive
optimizers. These different types of optimizers are
based on an operational aspect where the learning
rate is manually adjusted in the case of gradient
descent algorithms such as batch gradient descent,
stochastic gradient descent, and mini-batch gradient
descent, while it is automatically adjusted in the
case of adaptive algorithms, e.g., Adagrad, Adadelta
RMSprop, ADAM, ADAMW, and ADAMAX, to
name a few, as shown in Fig.1.

Batch gradient descent

Y

Gradient Descent-

based algorithm

Stochastic gradient
descent (SGD)

Optimizer

Mini-batch gradient
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Figure 1. Optimizer Categorization.

Among commonly used optimizers, adaptive
gradient-based methods such as ADAM have shown
potential for performance improvements over SGD
in some scenarios and have become the default
choice in most studies®®. However, recent studies
show that ADAM, which is known for its scale-
invariant parameter updates, is often criticized due
to concerns about its generalization performance
compared to SGD in image classification®.

Although ADAMW — a variant in which the
weight decay is managed after controlling the
parameter-wise step size—presents an interesting
alternative, there are few comparative studies
between these optimizers. Therefore, this study
aims to compare and investigate the effects of the
optimizers SGD with Momentum, ADAM and
ADAMW on the text chatbot CST dataset. The
objective is to evaluate their performance based on
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training and validation losses and the BLEU scores
for different search strategies to gain insight into the
balance between optimization performance and
computational efficiency. By revealing the
performance nuances of these optimizers, this study
seeks to guide the choice of optimization techniques
in the development of neural network-based

Materials and Methods

This section provides an overview of the current
methodological approach to research on the neural
generative attention mechanism of the seg2seq
model. The seq2seq learning task model is generally
based on an encoder-decoder architecture consisting
of three parts: encoder, context vector (final
hidden/internal state vector), and decoder. To
improve the performance of this structure, the
augmentation layer of attention and the use of bi-
LSTM are adopted in the encoder part. Before this
model is performed, several preprocessing steps are
required to conduct the current experimental study.
The first step begins with splitting the initial dataset
into a training set and a test set. The whole dataset
is split into 75% and 35% for the training and
validation/test sets, respectively. In this study, the
publicly available dataset "Customer Support on a
Twitter (CST)" from Kaggle was used to train and
evaluate the models. The dataset should then be
prepared for modeling. The preparation process
includes preprocessing and feature extraction. For
feature extraction, a transfer learning approach was
adopted by using FastText pre-trained word
embeddings to speed up training and increase model
performance®. This approach considers knowledge
transfer between networks trained on different
datasets. The result of this step is incorporated into
the neural generative attention model, which is
trained with a training set. The training of this
model to predict the response matches the ground-
truth answers. The training process can be
represented as minimizing the loss function L(9),
where 6 represents the model parameters. The
objective is to find the optimal 8 that minimizes the
difference between the predicted response and the
ground truth, which can be mathematically defined
by Eq. 1.

chatbots to improve their conversational quality and
practicality.

The structure of this paper is outlined as follows:
Section 2 presents the methodology of our
experiments. The results obtained from the
experiments are reported and discussed in Section 3,
and finally, Section 4 summarizes the research
findings and suggests directions for future studies.

1 ~
L(0) = 32 Lu )

where L(6) is the average loss over the training set,
N is the number of examples in the training set, y,

refers as the ground truth for 4, 9, is the predicted
response for i generated by the model, and L(y,)

is the loss for i calculated using a loss function
suitable for the problem at hand such as sparse-
categorical cross-entropy loss for this case.

The optimization process to minimize L(6) can be
performed using a gradient-based optimizer such as
SGD or adaptive methods like ADAM and
ADAMW. These methods iteratively update
parameter 6 based on the gradient of the loss
function with respect to @ ° These iterations
continue until a stopping criterion is met, e.g., a
predefined number of epochs or until the change in
L(9) falls below a certain threshold. The final result
is an optimized set of parameters 6 that can be used
to make predictions that are very close to the
ground truth. Finally, prepare the validation or test
data set accordingly and use it to evaluate the
models. Fig.2 illustrates the methodology used in
this work.

This experiment is performed in a Python-
dependent package on a deep neural network
framework called TensorFlow’ and Keras. The
model was trained on a GPU with 3082 CUDA
cores and a VRAM of 12 GB. The model was
trained for 500 epochs (a high value since the study
uses the early-stopping technique) and tested with a
batch size of 64. The hidden size of the LSTM is
tested with 480 units (the LSTM units that our
memory space can hold). The three different
optimizers (SGD, ADAM and ADAMW) were
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compared with a learning rate of 0.003 for the
optimization®. The hyperparameter learning rate
feeds into the optimization function. In the case of
the SGD optimizer, only the momentum-
accelerating gradient descent y € {0.09} was
tested. Here, O represents the vanilla gradient
descent and 0.9 represents the convention’. A
gradient clipping of 50.0 was also added to
counteract the 'exploding gradient' problem. In this
way, the gradients from growing exponentially and
either overflowing (undefined values) or exceeding
cliffs in the cost function. All weights and biases are

initialized using the Xavier Uniform Glorot and
Bengio (2010) distribution'. 300-dimensional pre-
trained word embeddings for FastText were used.
An early stopping technique with patience 5 was
also employed to prevent overfitting. However,
there are limitations to using the ADAMW
optimizer since our memory resources are not
occupied by the early stopping technique for
training. Therefore, ten epochs for ADAMW were
implemented without an early stopping technique
for the model in this study. The hyperparameters
and for training the models are listed in Table 1.
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Figure 2. lllustration of the Methodology Step.

Table 1. Hyperparameter Setting.

Parameter Config 1 Config 2 Config 3
Max Length Input 39 39 39
Embedding size 300 300 300
Batch Size 64 64 64
Hidden Unit 480 480 480
Learning rate 0.003 0.003 0.003
Clipvalue 0.5 0.5 0.5
Optimizer Adam Adamw SGD
Learning_rate_decay 1.00E-06 none none
Word embedding FastText FastText FastText
Encoder type Bidirectional Bidirectional Bidirectional
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Results and Discussion

In this section, the experimental results of the model
for the aforementioned dataset are presented. The
experiment evaluated the performance of the
different optimizers on the neural additive attention
model with the pre-trained FastText embedding as
an input feature to a model. Table 2 and Fig.3 show
the performance results of the different optimizers
on the model based on the sparse-categorical
entropy loss during training and the BLEU scores
metric in the inference phase. Due to memory
issues, only ten epochs were run for Config 2, while
an early stopping technique was used for the other
configs during the training phase. The result shows
that ADAM is the most effective optimizer during
the training process, as it achieves the lowest
training loss of 1.004115, which means that it
converges the fastest during the training phase. On
the other hand, SGD recorded the highest training
loss of 1.557569, indicating a slower and less
effective learning process. However, the validation
loss result showed that ADAMW had the lowest
validation loss of 1.138623, indicating that it is the
most effective at generalizing and performing well

on unseen data despite running on minimal 10
epochs. In addition, ADAMW achieved the highest
BLEU score in the beam search scenario. This
shows that ADAMW was able to learn efficiently in
a minimal number of epochs. In the inference phase,
the BLEU score analysis revealed nuances in the
performance characteristics of the different
optimizers. The highest BLEU in the greedy search
was obtained by the SGD optimizer, indicating a
better prediction of response quality with this search
strategy. However, it is too time-consuming (almost
a week to train a single model), which makes it
seem less practical. This emphasizes the importance
of considering multiple aspects when selecting an
optimizer, including not only training efficiency but
also generalization capabilities for unseen data and
specific performance metrics under different
inference techniques. Considering this aspect, the
results highlight the importance of finding a balance
between optimization performance and
computational efficiency, positioning ADAMW as a
promising alternative when training efficiency and
generalization performance are primary concerns.

Table 2. Comparison of Different Optimizers based on the Neural Attention Model

Training Phase

Inference Phase

FASTTEXT
BLEU
Model Loss Val Loss Greedy Search Beam Search (k=3)
Config 1 1.004115 1.145985 0.433493 0.424751
Config 2 1.073800 1.138623 0.438506 0.440251
Config 3 1.557569 1.576885 0.440100 0.436540
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Figure 3. BLEU Score for Optimizers During the Inference Phase.

Conclusion

The study aimed to investigate the performance of
different optimizers (SGD, ADAM, and ADAMW)
on the neural additive attention model with FastText
pre-trained embedding based on their sparse
categorical loss during training and BLEU in the
inference phase. During the training phase, ADAM
proved to be the most efficient optimizer in
minimizing loss. However, this did not directly
translate into superior performance in all aspects of
the inference phase, with ADAMW showing robust
generalization and performing well on unseen data
despite running on minimal 10 epochs, especially in
beam search, while SGD was competitive in BLEU
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