

Page | 655

2024, 21(2 Special Issue): 0655-0661

https://doi.org/10.21123/bsj.2024.9743

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

The Effect Of Optimizers On The Generalizability Additive Neural

Attention For Customer Support Twitter Dataset In Chatbot

Application

Sinarwati Mohamad Suhaili*
1,2

, Naomie Salim
1

, Mohamad Nazim Jambli
3

1
Faculty of Computing, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.

2
Centre of Pre-University, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia.

3
Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak,

Malaysia.

*Corresponding Author.

PARS2023: Postgraduate Annual Research Seminars 2023.

Received 29/09/2023, Revised 10/02/2024, Accepted 12/02/2024, Published 25/02/2024

 © 2022 The Author(s). Published by College of Science for Women, University of Baghdad.

This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International

License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

Introduction

Integrating artificial intelligence (AI) through the

use of neural networks is a widely used approach in

various fields such as object and speech recognition,

healthcare, and business, including chatbots.

Chatbots based on neural networks typically aim to

find the best function approximation by finding

network parameters that minimize the error function

during training data
1
. An error function measures

how accurate the output of a model is compared to

the actual output (target values). To improve the

Abstract

When optimizing the performance of neural network-based chatbots, determining the optimizer is one

of the most important aspects. Optimizers primarily control the adjustment of model parameters such

as weight and bias to minimize a loss function during training. Adaptive optimizers such as ADAM

have become a standard choice and are widely used for their invariant parameter updates' magnitudes

concerning gradient scale variations, but often pose generalization problems. Alternatively, Stochastic

Gradient Descent (SGD) with Momentum and the extension of ADAM, the ADAMW, offers several

advantages. This study aims to compare and examine the effects of these optimizers on the chatbot

CST dataset. The effectiveness of each optimizer is evaluated based on its sparse-categorical loss

during training and BLEU in the inference phase, utilizing a neural generative attention-based additive

scoring function. Despite memory constraints that limited ADAMW to ten epochs, this optimizer

showed promising results compared to configurations using early stopping techniques. SGD provided

higher BLEU scores for generalization but was very time-consuming. The results highlight the

importance of finding a balance between optimization performance and computational efficiency,

positioning ADAMW as a promising alternative when training efficiency and generalization are

primary concerns.

Keywords: ADAM, ADAMW, Neural Network-based Chatbot, Optimizer, SGD.

https://doi.org/10.21123/bsj.2024.9743
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-3354-9679
mailto:mssinarwati@unimas.my
https://orcid.org/0000-0001-8509-3055
mailto:naomie@utm.my
https://orcid.org/0000-0002-2117-5964
mailto:jmnazim@unimas.my

Page | 656

2024, 21(2 Special Issue): 0655-0661

https://doi.org/10.21123/bsj.2024.9743

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

output (response), such parameters (weights) have

to be optimized using optimization functions. Such

parameters can be learned by training on labeled

data (target values). Thus, the error is measured by

comparing the values for each prediction y with the

actual output (target values). The measurement of

this error is associated with a loss or cost function
1
.

To find an optimal weighting for the minimum loss

function, the backpropagation algorithm can be

used by adjusting the gradients of the loss function.

Backpropagation is an algorithm for computing

gradients from the output using the chain rule
1
 and

is an example of optimization techniques for

training neural models based on gradients.

However, the use of an algorithm based on finding

gradients is very limited in its ability to find

solutions for generalization. This limitation has led

to the investigation of other optimization algorithms

using decoupled decay regularization techniques

such as ADAM and ADAMW, which are known for

their superior performance. The efficiency of these

chatbots in simulating human dialogues largely

depends on the optimal tuning of the neural network

weights, which is usually achieved by gradient-

based algorithms such as backpropagation.

The optimizer determines how the network is

updated based on the loss function. An optimizer

concatenates the loss function and the model

parameters by updating the model in response to the

output of the loss function. Optimizers help

minimize the loss function. There are two types of

optimizers: gradient descent-based and adaptive

optimizers. These different types of optimizers are

based on an operational aspect where the learning

rate is manually adjusted in the case of gradient

descent algorithms such as batch gradient descent,

stochastic gradient descent, and mini-batch gradient

descent, while it is automatically adjusted in the

case of adaptive algorithms, e.g., Adagrad, Adadelta

RMSprop, ADAM, ADAMW, and ADAMAX, to

name a few, as shown in Fig.1.

Figure 1. Optimizer Categorization.

Among commonly used optimizers, adaptive

gradient-based methods such as ADAM have shown

potential for performance improvements over SGD

in some scenarios and have become the default

choice in most studies
2,3

. However, recent studies

show that ADAM, which is known for its scale-

invariant parameter updates, is often criticized due

to concerns about its generalization performance

compared to SGD in image classification
2,4

.

Although ADAMW — a variant in which the

weight decay is managed after controlling the

parameter-wise step size—presents an interesting

alternative, there are few comparative studies

between these optimizers. Therefore, this study

aims to compare and investigate the effects of the

optimizers SGD with Momentum, ADAM and

ADAMW on the text chatbot CST dataset. The

objective is to evaluate their performance based on

https://doi.org/10.21123/bsj.2024.9743

Page | 657

2024, 21(2 Special Issue): 0655-0661

https://doi.org/10.21123/bsj.2024.9743

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

training and validation losses and the BLEU scores

for different search strategies to gain insight into the

balance between optimization performance and

computational efficiency. By revealing the

performance nuances of these optimizers, this study

seeks to guide the choice of optimization techniques

in the development of neural network-based

chatbots to improve their conversational quality and

practicality.

The structure of this paper is outlined as follows:

Section 2 presents the methodology of our

experiments. The results obtained from the

experiments are reported and discussed in Section 3,

and finally, Section 4 summarizes the research

findings and suggests directions for future studies.

Materials and Methods

This section provides an overview of the current

methodological approach to research on the neural

generative attention mechanism of the seq2seq

model. The seq2seq learning task model is generally

based on an encoder-decoder architecture consisting

of three parts: encoder, context vector (final

hidden/internal state vector), and decoder. To

improve the performance of this structure, the

augmentation layer of attention and the use of bi-

LSTM are adopted in the encoder part. Before this

model is performed, several preprocessing steps are

required to conduct the current experimental study.

The first step begins with splitting the initial dataset

into a training set and a test set. The whole dataset

is split into 75% and 35% for the training and

validation/test sets, respectively. In this study, the

publicly available dataset "Customer Support on a

Twitter (CST)" from Kaggle was used to train and

evaluate the models. The dataset should then be

prepared for modeling. The preparation process

includes preprocessing and feature extraction. For

feature extraction, a transfer learning approach was

adopted by using FastText pre-trained word

embeddings to speed up training and increase model

performance
5
. This approach considers knowledge

transfer between networks trained on different

datasets. The result of this step is incorporated into

the neural generative attention model, which is

trained with a training set. The training of this

model to predict the response matches the ground-

truth answers. The training process can be

represented as minimizing the loss function L(θ),

where θ represents the model parameters. The

objective is to find the optimal θ that minimizes the

difference between the predicted response and the

ground truth, which can be mathematically defined

by Eq. 1.

𝐿(𝜃) =
1

𝑁
∑ 𝐿(𝑦𝑖 , 𝑦̂𝑖

𝑁
𝑖=1) 1

where L(θ) is the average loss over the training set,

N is the number of examples in the training set, y
i

refers as the ground truth for i, ŷ
i
 is the predicted

response for 𝑖 generated by the model, and L(y
i
,ŷ

i
)

is the loss for i calculated using a loss function

suitable for the problem at hand such as sparse-

categorical cross-entropy loss for this case.

The optimization process to minimize L(θ) can be

performed using a gradient-based optimizer such as

SGD or adaptive methods like ADAM and

ADAMW. These methods iteratively update

parameter θ based on the gradient of the loss

function with respect to θ
6
. These iterations

continue until a stopping criterion is met, e.g., a

predefined number of epochs or until the change in

L(θ) falls below a certain threshold. The final result

is an optimized set of parameters 𝜃 that can be used

to make predictions that are very close to the

ground truth. Finally, prepare the validation or test

data set accordingly and use it to evaluate the

models. Fig.2 illustrates the methodology used in

this work.

This experiment is performed in a Python-

dependent package on a deep neural network

framework called TensorFlow
7
 and Keras. The

model was trained on a GPU with 3082 CUDA

cores and a VRAM of 12 GB. The model was

trained for 500 epochs (a high value since the study

uses the early-stopping technique) and tested with a

batch size of 64. The hidden size of the LSTM is

tested with 480 units (the LSTM units that our

memory space can hold). The three different

optimizers (SGD, ADAM and ADAMW) were

https://doi.org/10.21123/bsj.2024.9743

Page | 658

2024, 21(2 Special Issue): 0655-0661

https://doi.org/10.21123/bsj.2024.9743

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

compared with a learning rate of 0.003 for the

optimization
8
. The hyperparameter learning rate

feeds into the optimization function. In the case of

the SGD optimizer, only the momentum-

accelerating gradient descent 𝛾 ∈ {0.09} was

tested. Here, 0 represents the vanilla gradient

descent and 0.9 represents the convention
9
. A

gradient clipping of 50.0 was also added to

counteract the 'exploding gradient' problem. In this

way, the gradients from growing exponentially and

either overflowing (undefined values) or exceeding

cliffs in the cost function. All weights and biases are

initialized using the Xavier Uniform Glorot and

Bengio (2010) distribution
10

. 300-dimensional pre-

trained word embeddings for FastText were used.

An early stopping technique with patience 5 was

also employed to prevent overfitting. However,

there are limitations to using the ADAMW

optimizer since our memory resources are not

occupied by the early stopping technique for

training. Therefore, ten epochs for ADAMW were

implemented without an early stopping technique

for the model in this study. The hyperparameters

and for training the models are listed in Table 1.

Figure 2. Illustration of the Methodology Step.

Table 1. Hyperparameter Setting.

Parameter Config 1 Config 2 Config 3

Max Length Input 39 39 39

Embedding size 300 300 300

Batch Size 64 64 64

Hidden Unit 480 480 480

Learning rate 0.003 0.003 0.003

Clipvalue 0.5 0.5 0.5

Optimizer Adam AdamW SGD

Learning_rate_decay 1.00E-06 none none

Word embedding FastText FastText FastText

Encoder type Bidirectional Bidirectional Bidirectional

https://doi.org/10.21123/bsj.2024.9743

Page | 659

2024, 21(2 Special Issue): 0655-0661

https://doi.org/10.21123/bsj.2024.9743

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

Results and Discussion

In this section, the experimental results of the model

for the aforementioned dataset are presented. The

experiment evaluated the performance of the

different optimizers on the neural additive attention

model with the pre-trained FastText embedding as

an input feature to a model. Table 2 and Fig.3 show

the performance results of the different optimizers

on the model based on the sparse-categorical

entropy loss during training and the BLEU scores

metric in the inference phase. Due to memory

issues, only ten epochs were run for Config 2, while

an early stopping technique was used for the other

configs during the training phase. The result shows

that ADAM is the most effective optimizer during

the training process, as it achieves the lowest

training loss of 1.004115, which means that it

converges the fastest during the training phase. On

the other hand, SGD recorded the highest training

loss of 1.557569, indicating a slower and less

effective learning process. However, the validation

loss result showed that ADAMW had the lowest

validation loss of 1.138623, indicating that it is the

most effective at generalizing and performing well

on unseen data despite running on minimal 10

epochs. In addition, ADAMW achieved the highest

BLEU score in the beam search scenario. This

shows that ADAMW was able to learn efficiently in

a minimal number of epochs. In the inference phase,

the BLEU score analysis revealed nuances in the

performance characteristics of the different

optimizers. The highest BLEU in the greedy search

was obtained by the SGD optimizer, indicating a

better prediction of response quality with this search

strategy. However, it is too time-consuming (almost

a week to train a single model), which makes it

seem less practical. This emphasizes the importance

of considering multiple aspects when selecting an

optimizer, including not only training efficiency but

also generalization capabilities for unseen data and

specific performance metrics under different

inference techniques. Considering this aspect, the

results highlight the importance of finding a balance

between optimization performance and

computational efficiency, positioning ADAMW as a

promising alternative when training efficiency and

generalization performance are primary concerns.

Table 2. Comparison of Different Optimizers based on the Neural Attention Model

Training Phase Inference Phase

FASTTEXT

 BLEU

Model

Loss

Val Loss

Greedy Search

Beam Search (k=3)

Config 1

1.004115

1.145985

0.433493

0.424751

Config 2

1.073800

1.138623

0.438506

0.440251

Config 3

1.557569

1.576885

0.440100

0.436540

https://doi.org/10.21123/bsj.2024.9743

Page | 660

2024, 21(2 Special Issue): 0655-0661

https://doi.org/10.21123/bsj.2024.9743

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

Figure 3. BLEU Score for Optimizers During the Inference Phase.

Conclusion

The study aimed to investigate the performance of

different optimizers (SGD, ADAM, and ADAMW)

on the neural additive attention model with FastText

pre-trained embedding based on their sparse

categorical loss during training and BLEU in the

inference phase. During the training phase, ADAM

proved to be the most efficient optimizer in

minimizing loss. However, this did not directly

translate into superior performance in all aspects of

the inference phase, with ADAMW showing robust

generalization and performing well on unseen data

despite running on minimal 10 epochs, especially in

beam search, while SGD was competitive in BLEU

scores but very time-consuming. These results

highlight the need to balance training efficiency

with various aspects of validation and search

strategies when selecting an optimizer. According

to our result, ADAMW is a promising alternative

when training efficiency and generalization

performance are the main concerns as it can achieve

comparable results for all evaluation aspects even

though 10 epochs were used to train the model

without implementing an early stopping technique

due to memory constraints. If more epochs are used,

it can be inferred that a satisfactory result can be

obtained for the model performance.

Acknowledgment

The authors would like to express their gratitude to

the Ministry of Higher Education Malaysia for

partially funding this research under the

Fundamental Research Grant Scheme

(FRGS/1/2022/ICT06/UTM/01/1) with grant vote

No. R.J130000.7851.5F568. Furthermore,

appreciation is extended to Universiti Malaysia

Sarawak (UNIMAS) and Universiti Teknologi

Malaysia (UTM) for providing the necessary

resources for this research work.

Authors’ Declaration

- Conflicts of Interest: None.

- We hereby confirm that all the Figures and

Tables in the manuscript are ours. Furthermore,

any Figures and images, that are not ours, have

been included with the necessary permission for

re-publication, which is attached to the

manuscript.

- Ethical Clearance: The project was approved by

the local ethical committee at the University of

Universiti Teknologi Malaysia.

0.415

0.42

0.425

0.43

0.435

0.44

0.445

Config 1 Config 2 Config 3

B
LE

U
 S

co
re

Optimizers

Greedy Search Beam Search (k=3)

https://doi.org/10.21123/bsj.2024.9743

Page | 661

2024, 21(2 Special Issue): 0655-0661

https://doi.org/10.21123/bsj.2024.9743

P-ISSN: 2078-8665 - E-ISSN: 2411-7986

Baghdad Science Journal

Authors’ Contribution Statement

S. M.S. ,N. S. and M.N. J. contributed to the design

and development of the research, to implement and

analysis of the results, and to the manuscript.

References

1. Goodfellow I, Bengio Y, Courville A. Deep

Learning. MIT Press; 2016.

http://www.deeplearningbook.org.

2. Gupta M, Rajnish K, Bhattacharjee V. Impact of

parameter tuning for optimizing deep neural network

models for predicting software faults. Sci Program.

2021;1–17.https://doi.org/10.1155/2021/6662932.

3. Sulayman N. Deep Learning-based Predictive Model

of mRNA Vaccine Deterioration: An Analysis of the

Stanford COVID-19 mRNA Vaccine Dataset.

Baghdad Sci. J . 2023;20(4(SI):1451-8.

https://doi.org/10.21123/bsj.2023.8504.

4. Zhou P, Feng J, Ma C, et al. Towards theoretically

understanding why sgd generalizes better than adam

in deep learning. Adv Neural Inf Process Syst.

2020;33:21285–21296.

5. Wotaifi TA, Dhannoon BN. An Effective Hybrid

Deep Neural Network for Arabic Fake News

Detection. Baghdad Sci. J . 2023;20(4):1392.

https://doi.org/10.21123/bsj.2023.7427.

6. Aggarwal CC. Neural networks and deep learning: A

textbook. 2nd ed. Springer International Publishing;

2023. https://doi.org/10.1007/978-3-031-29642-0

7. Abadi M, Barham P, Chen J, et al. TensorFlow: A

system for large-scale machine learning. 2016.

8. Mou L, Jin Z. Tree-Based Convolutional Neural

Networks: Principles and Applications. 1st ed.

Springer Publishing Company, Incorporated; 2018.

https://doi.org/10.1007/978-981-13-1870-2

9. Tian Y, Zhang Y, Zhang H. Recent Advances in

Stochastic Gradient Descent in Deep Learning.

Mathematics. 2023;11(3):682.

http://dx.doi.org/10.3390/math11030682.

10. Glorot X, Bengio Y. Understanding the difficulty of

training deep feedforward neural networks. In: Teh

YW, Titterington DM, editors. AISTATS, JMLR

Proceedings, vol. 9; 2010. p. 249–256.

ِّنات على قابلية التعميم للانتباه العصبي الإضافي لمجموعة بيانات تويتر لدعم تأثير المُحس

 Chatbotالعملاء في تطبيق

سينارواتي محمد سهيلي
1،2

، نعومي سليم
1
محمد ناظم جمبلي،

3

1
 .، سكوداي، جوهور، ماليزيا81310كلية الحاسبات، الجامعة التكنولوجية الماليزية،

2
 .كوتا ساماراهان، ساراواك، ماليزيا 94300مركز ما قبل الجامعة، جامعة ماليزيا ساراواك،

3
 .اهان، ساراواك، ماليزياكلية علوم الكمبيوتر وتكنولوجيا المعلومات، جامعة ماليزيا ساراواك، كوتا سامار

 ةالخلاص

عند تحسين أداء روبوتات الدردشة القائمة على الشبكة العصبية، يعد تحديد المحسن أحد أهم الجوانب. يتحكم المحسنون بشكل أساسي

 ADAMفي تعديل معلمات النموذج مثل الوزن والتحيز لتقليل وظيفة الخسارة أثناء التدريب. أصبحت أدوات التحسين التكيفية مثل

م على نطاق واسع لأحجام تحديثات المعلمات الثابتة الخاصة بها فيما يتعلق بتغيرات مقياس التدرج، ولكنها غالبًا خيارًا قياسياً وتستخد

، ADAM ،ADAMW(مع الزخم وامتداد SGDما تطرح مشاكل تعميم. وبدلاً من ذلك، يقدم مؤشر الهبوط التدرج العشوائي)

ِّنات على مجموعة بيانات تهدف هذه الدراسة إلى مقارنة العديد من المزايا . يتم تقييم فعالية chatbot CSTوفحص تأثيرات هذه المُحس

في مرحلة الاستدلال، وذلك باستخدام وظيفة تسجيل مضافة BLEUكل محسن بناءً على خسارته الفئوية المتفرقة أثناء التدريب و

بعشر فترات، أظهر هذا المحسن نتائج ADAMWتي حددت تعتمد على الاهتمام التوليدي العصبي. على الرغم من قيود الذاكرة ال

أعلى للتعميم ولكنها كانت تستغرق وقتاً BLEUدرجات SGDواعدة مقارنة بالتكوينات التي تستخدم تقنيات الإيقاف المبكر. قدمت

كبديل واعد ADAMWمما يضع طويلاً للغاية. تسلط النتائج الضوء على أهمية إيجاد توازن بين أداء التحسين والكفاءة الحسابية،

 عندما تكون كفاءة التدريب والتعميم هي الاهتمامات الأساسية

 .Optimizer ،SGDالقائم على الشبكة العصبية، ADAM ،ADAMW ،Chatbot الكلمات المفتاحية:

https://doi.org/10.21123/bsj.2024.9743
http://www.deeplearningbook.org/
https://doi.org/10.1155/2021/6662932
https://doi.org/10.21123/bsj.2023.8504
https://doi.org/10.21123/bsj.2023.7427
https://doi.org/10.1007/978-3-031-29642-0
https://doi.org/10.1007/978-981-13-1870-2
http://dx.doi.org/10.3390/math11030682

