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Abstract

A novel technique and an efficient modification based on Adomian decomposition method and
homotopy approach for finding accurately analytic solutions to non-linear (noise term) quadratic matrix
retarded delay equations connected with the method of steps to make the problem more easily is discussed.
These approaches more efficiently, effectively and accurately. Wholly integration for homotopy analysis
method use in state the wholly integration for Adomian approach. Main advantage of this technique is to
get more an accurate and efficient results with more extended of the convergence region of iterative
approximate solutions obtained with bigger and whole time interval and to know the accurate solution with
long interval under delay influence until ¢ = 8 and can more. Term of delay is disappeared after apply the
method of steps. Absolute residual error is conducted. To reduce the time and more complicated
calculations, Laplace transform for each components is applied. Finally, the results which obtained by this
technique is an effective and rapidly converge for exact solution for whole time interval with more extended
of the convergence region. This technique can used to different nonlinear problem. The Adomian
decomposition method is a semi analytical technique for solving different type of differential equations
ordinary, partial, fractional, delay differential equations and many type. This method was developed by
George Adomian. It is rapidly converge to exact solution and used for linear , nonlinear, homogeneous and
nonhomogeneous equations. Adomian polynomial allow the solution converge to exact solution without
simply linearizing the problem under consideration. The same for homotopy.

Keywords: Adomian method, Adomian- Homotopy technique, Laplace transform, Method of steps,
Quadratic matrix retarded delay differential equation.

Introduction

Currently, Adomian-Homotopy technique applies
for quadratic matrix retarded delay differential
equation (QMRDDE):

G(t) +G(t—1)D +DTG(t) — G()PG(L) + S(t)
=0, te€]cT], 1

where T > 0 constant,c € R .

and G,P,S and D are m X m matrices; P = PT,S =
ST t=1,

and the initial matrix function

G(t) = Zy(0),
2

c—1t<t<c c apositive .

Adomian decomposition approach (ADM) a semi
analytic method and may apply for many kinds
include partial differential equation *.

This solution of this approach is infinitely series
converge with closed form easily 2. Application of
ADM with Laplace transform for third-order
dispersive fractional partial differential equations *.
Homotopy analysis method using Jumaries approach
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for nonlinear wave-like equations of fractional order
is presented °. Analytic solutions for matrix and
delay matrix differential equations is discussed °’.
Approximate and accurate solution for solving
higher order initial value problems is discussed &.
Approximate analytic solution for bright optical
soliton to nonlinear Schrddinger Equation is
presented °. A modification of ADM for fractional
diffusion equations with initial conditions is
discussed 2°.

Previously, Liao applied the basic idea for
homotopy based on topological for suggesting
approximate analytics method to nonlinear equation,
which name Homotopy Analysis Method (HAM) 1.
This method the series solution for many types of
nonlinear problem 2. It’s strongly method use for
finding solutions of nonlinear form . The
application of HAM to solve nonlinear equation
systems with integrated genetic algorithm is
considered .  The quotient HAM for solving
nonlinear equations is studied °. Application of
HAM for solving fractional barrier PDEs is
presented 6. Application of Lagrange Polynomials to
find a numerically solutions fractional-Volterra
Fredholm-integro type is studied . Implementation
of HAM with time-fractional black-scholes
equations is discussed 8.

For this study, a QMRDDE is solved analytically
by Adomian-Homotopy (ADM-HAM) technique. A
motivation of this technique is to provide us a
solution of quadratic matrix retarded delay
differential equations in infinite series associated
with the method of steps and to get more an accurate
with efficient results for this type of questions with
more extended of the convergence region of iterative
approximate solutions for whole time interval
obtained under delay influence whenever the
iteration is increased. Absolute residual error is
conducted. Furthermore, that is capable of to provide
us a continuous representation of the approximate
solution, which gives a better information of the
results with whole time interval.

Analysis of  the

Technique for Solving QMRDDE

First, apply HAM to QMDDE discussed. Hence
non-linear m x m of QMRDDE, Eq 1.

Adomian-Homotopy

G(t) +G(t—1)D +DTG(t) — G(t)PG(t) +
St)=0, telcT], 3

where T > 0 constant, ¢ qualitative nonnegative in R

)

G matrixm X m, P& D constant matrices ; P = PT,
§=S8T, t=1, and G(t) is a matrix, based on
historic:

G(t) =Zy(t), t €[c—1,c] 4
With apply method of steps on delay differential
equations 7, general for each time steps

[c+it,c+({+Dr]:], i=12,..,m;;nEN

G(t) +DTG(t) — G)PG(t) + (S(t) + Z;(t —
7)D) =0, 5
G(t)+DTG() —G)PG(t) +S*(t) =0, 6

where S*(t) = S(t) + Z;(t — t)D. Suppose u(t, s)
be a matrix function homotopy, so:
1 0™u

Vn(0) = —

m! ds™

s=0

Zero order is:

(1 = s)L[u(t,s) — Go(2)]
= shN[u(t,s)], 7

for Eg.3 become:

L[Gm(t) - Xme—l(t)] =

av,,_(N[G]), m =1, 8
N[G] =G(t) +
DTG(t) — G(t)PG(t) + S*(b),
9
where LIG1=G®), xm=

{0, m<1

1, m>1"

Gt)= ) G()s, 10

2

Rme_1 = _acérz—l + DTGm_l -
Yt PGy + (1= x,)(ST). 11

Then, Eq 11 after apply inverse operator with initial
condition, for m = 1 becomes:
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Gm (t) = XmGm-1

t
41 [ a0+ D7 a0
mgl
= > GWP Gy () + (1
i—0
- Xm)(S*))du
= Xme—l + h[(Gm—tl (t) - (1 - Xm)Gm—l(O)]

+h | (DTG (w)
|
m-—1
= > GaP Gy () + (1
i-0
- Xm)(S*))du;

= ()(m + h)Gm—l(t) - h(l - Xm)Gm—l(O) +
R fy (DT Gy () — E51 Gy (WP Gy i ()

+(1 — y)(S™)du. 12

For ADM to solve Eq 1, consider nonlinear m X
m QMRDDE Eq 1:

G() +G(t—1)D+DTG(t) — G(t)PG(t) +
St)=0, te€l[cT], 13

with initial function: G(t) = Zy(t), te

[c —1,c].

Now, apply method of steps on delay differential

equations, general for each time steps
[c+it,c+({(+Dr], i=12,..,m;;nEN

G(t) +DTG(t) — G(t)PG(t)
+(S)+Z,(t—1)D)
=0,

G(t)+DTG() — G)PG(t) +S*(t) =0, 14
where S*(t) = S(t) + Z;(t — T)D.
G(c)=Q 15

where Q is m X m constant matrix, and G assumed
to be bounded matrix, for t € [c, T], that is

lg;; | <M,c <t <T, G(t) = (gij(t))nxn . the
noise term N(G) = GPG, has polynomial matrices:

N(G)=GPG= ) F,
n=0
and F,, can be express:

Fo(t) = Go(t)PGy(t)
Fi(t) = Go(O)PG () +G1(H)PGo(8)

16
RO )
1d" i i
== ZA Gi(t) | P ZA aolll
i=0 i=0 A=0
E,(t) is polynomial Adomian matrices. Where:
Wn = Z?:O GL 1 17
Application of ADM on Eq 13 is:
G() = Xi20Gi(0),
and Go(t) = Q + L™(=5*(1)),
Gl(t) = L_l(—FTGi_l) + L_lFi_l, [ = 1, 8

Now, whole integration for ADM in Eq 18 is
replaced by the integration of Eq 12 for HAM. In this
case, accurately and efficiently solution with more
extended of the convergence region until t = 8 and
can be more is obtained under delay influence
compare with the obtained by Eq 18, to reduce the
time and more complicated calculations, Laplace
transform will be used for each term, as:

m—1

60 =17 D Gns (@ = ) GWP Gyny4()
i—0

+(1=x, )] i=1, 19

Numerical Simulation

Now, ADM-HAM technique which presented
above for solving QMRDDE implemented. Terms of
delay in non-linear parts will disappeared. One may
see that this technique strongly, effectively, reliable
with rapidly converge to exact solution with
extended of the convergence region for whole time
interval whenever the iteration is increased.
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Example 1:
Consider the non-linear 2 x 2 QMRDDE of
the form:

G()+G@)D +DTG(t) — G(OPG(t —1) +

S)=0, =1, t,=0, 20
p=( D). = 5= P

stationary history condition

Go(t)z((t) 2) _1<t<o.

(G 9-Co 22

(4x(t) +x@®)+y@®)+z@)+x®)(E—-1)+1
w(t) +x(t) +4z(t) +z(t) + z(t)(t — 1)

(J'c(t) +B+Ox+yt)+z(t)+1
z)+ B+ t)z+x(t) +w(t)

In this example, the term of delay in nonlinear
part Eq 21 will disappears after apply method of
steps Eq. 22, and may considered as quadratic matrix
differential equation. Then apply the Adomian-
Homotopy to Eq 22 to every equation and initially

approximation  Go(t) = (g 2)

Results and Discussion

3w) +w) +y()+z(>t)+1

y(@) + 3y(t) + x(t) + w(t) ) _ (0 0)
w(t) +3w() +y(t) +z(t) +1)

Now, by using method of first step:

G()+G(t)D +DTG(t) — G(OPG(t — 1) +
Si) =0, 21

x(t)  y(0) ®) y@®
(E(E) 3]11(1;))-'_(;6(;) 3]1/(1;))(? ;)

G 0o o)

B D)=0 ) oses

w(t) + x(t) + 3y(t) + y(t) )=(0 0) 22
0o o)

0 0

as explained to every term. To reduce the time and
more complicated calculations, Laplace transform
will be used for each term. With Mathematica
Software, the iteration can be obtained. Absolute
residual error for each component to show the high
an accurate solution is conducted in Table 1, Figs 1
and 2.

Table 1. Numerical results of ADM-HAM QMRDDE

Absolute residual error
of ADM-HAM for the
second component

t Absolute residual
error of ADM-HAM
for the first

Absolute residual error  Absolute residual error
of ADM-HAM for the of ADM-HAM for the
third component fourth component

component x;4 (t) X12(t) X21(t) X22(t)

0. 0 0 0 0

0.5 2.2204x1016 0 0 0

1. 4.4408x1016 8.8817x1016 2.2204x10716 1.7763x101
15 9.5479x101° 1.0214x10 1.6653x1015 1.1990x104
2. 4.1522x1014 7.8381x10 5.7620x10 7.1054x1014
2.5 2.8510x1013 1.1474x1012 6.0196x1013 1.8296x1012
3. 3.3819x1012 2.2738x1012 3.5264x107"? 1.5688x101
3.5 2.4843x1011 4.0017x101 3.4411x10 1! 1.0550%10°10
4, 1.8563x1010 7.5669x101° 7.5178x101! 7.5669x101°
4.5 8.1595x101° 5.1220x10° 1.0087x107° 5.5877x107°
5. 3.7321x10% 3.7398x107° 2.0348x108 5.2150x108
55 1.0333x1077 3.5825x107 7.9658x108 3.0912x108
6. 3.8974x107 2.7591x106 1.3451x10°® 2.6060x106
6.5 6.6614x10 2.0799x106 7.4046x106 2.6779x10°
7. 9.8977x10° 2.6244x10* 1.3548x10* 4.9654x107
7.5 5.9631x10* 9.2208x10* 7.7945%10°% 1.7489x10*
8. 1.9054x102 5.9478x107 4.7471x10°3 6.1852x103
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Figure 1. Absolute residual error of ADM-HAM
for all components

Figure 2. Absolute residual error of ADM-HAM
for all components

Example 2:
Consider the non-linear 2x 2 QMRDDE of
the form

G(@) +G)D +DTG(t) — G(t —T)PG(t) + S(t) =0,
T= 1, to = 0, 23
_(2 1 _(-1 0 _(1 0
D_(l 2)’ P_(O 1)’ S_(O 1)’
with stationary history condition
_(t 0y _
c;o(t)—(0 ), —1st=<o.

Hence, connection with the method of first step:
G(t) + G(t)D + DTG(t) — Go(t — DPG(t) + S(t)

=0, 24
x(t) y() ® y@®
Go 2ot Co we)G 27
(2 1)(x(t) y(t))_
1 2/\z(t) w(t)
(5" DG DCH w6 D=
(g 8),0St§1

N (4x(t) +x(t) +y(®) +z(t) +x(OCE -1 +1 w(t) +x(t) +4y(®) + y(©) + y(O)(t — 1)) _ (0 0)

w(t) + x(t) + 3z(t) + z(¢t)
25
<5c(t) + @B+ t)x+y() +z(t)+1
z(t) + 3z(t) + x(t) + w(t)

In this example, use delay terms with nose portion
Eq 24 then it disappear when apply a steps technique

Eg 25 and implement Adomian with initially
approximation condition: G, (t) = (8 2)
to reduce the time and more complicated

calculations, Laplace transform will be used for each

3w(t) +w(t) + y(t) +z(t) + 1 0 0

y(®) + B+ )y+x(t) +w(t) ) _ (o 0)
w(t) + 3w(t) + y(t) +z(t) + 1)

0 0

term. Using Mathematica software, to get the
iterative. Absolute residual error for each component
to show the high an accurate solution is conducted in
Table 2, Figs. 3 and 4.
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Table 2. Numerical results of ADM-HAM QMRDDE

Absolute
Absolute residual error
of ADM-HAM for the

residual error
of ADM-HAM for the

Absolute residual
Absolute residual error error
of ADM-HAM for the of ADM-HAM for the

first component x4 (t)

second component

third component x4 (t)

fourth component

X12(8) X22(t)
0. 0 0 0 0
0.5 2.2204x1016 0 0 0
1. 6.6613x1016 0 4.4408%1016 6.6613x1016
15 2.4424x10715 1.4432x1015 3.1036%101° 1.2434x10
2. 6.8167x1014 4,6185%x10 4.5963%x10 8.5265x101
2.5 1.0480x1013 1.7057x1013 3.1563x10712 1.5909x10%2
3. 4.1959x1012 7.2724x10712 9.7311x1013 1.2782x1011
35 5.3486x101! 2.7512x101! 2.7470x1011 8.2309x101
4, 5.5382x1011 7.4942x1010 1.4962x1010 6.8394x101°
4.5 1.0533x1010 4.1909%10° 2.0419x107° 6.5192x10°
5. 3.3622x108 3.7253x10° 1.1694x108 6.7055x108
55 5.5614x108 3.5762x108 2.5821x108 5.9602x108
6. 6.5373x107 2.3845x106 1.9670x10® 3.5764x106
6.5 5.3836%10 5.7146%106 1.0373x10° 3.2439x10°
7. 8.1918x10° 2.4342x10* 1.8125x10* 8.1062x106
7.5 2.8742x104 1.1501x10 5.3249x10* 4.3484x10*
8. 8.1455x10 2.9249x103 2.6362x107 2.3155x107
3.0x10%6 |
2.5% 1046 |
2.0x10% | IS1]
---- S2
15x10%F :53:
1.0x 1046 F | S4]
5.0x10%° F i
) T 6 8 T0 v 14

Figure 3. Absolute residual error of ADM-HAM
for all components

Conclusion

Adomian-Homotopy technique is discussed to
obtain a QMRDDE. Numerical results indicate that
the suggested technique is gives highly an accurate
solution in more extended of the convergence region
for whole time interval under delay influence
whenever the iteration is increased until t = 8 and
can be more. Method of steps is applied for making
the problem more easily. Term of delay is
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Figure 4. Absolute residual error of ADM-
HAM for all components

disappeared after apply the method of steps.
Absolute residual error is obtained. To reduce the
time and more complicated calculations, Laplace
transform for each component is applied. All results
indicate that this technique is capable of to provide
us a continuous representation of the approximate
solution, which gives a better information of the
results for whole time interval as well as the
neighborhood of the initial condition.
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