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Abstract:

Chemical compounds, characteristics, and molecular structures are inevitably connected.
Topological indices are numerical values connected with chemical molecular graphs that contribute to
understanding a chemical compounds physical qualities, chemical reactivity, and biological activity. In this
study, we have obtained some topological properties of the first dominating David derived (DDD) networks
and computed several K-Banhatti polynomials of the first type of DDD.

Keywords: Dominating David Derived networks, F — K Banhatti indices, harmonic K Banhatti indices, K-
Banhatti polynomial, K-hyper Banhatti indices, symmetric division K Banhatti indices.

Introduction:
Suppose that G = (V, E) is a finite, simple, B.(G,x,y) =
connected graph 2 A chemical compound is Y we |E,,| x[4c@+da(e)] yldg)+da(e)]
represented by a simple graph called a molecular d(w)=d(v)
graph in chemical graph theory, which is a branch ~ B2(G,x,¥) =
of graph theory, with the vertices representing the Y ue  |Eye| x196(ds(@] yldg)+dg(e)]

: d(w)=d(v)
S?Omfxboaﬁﬁ?s. far;d trge he(i%?]stai;esprie?;g;% ggg The Ist & 11" K hyper Banhatti indices ° are defined
: grap a5

connection between its vertices, it is referred to be _ 2
connected. A network is a graph with no loops or B, (G) = XuelEuel [de(u) + dg (e)]

\ : - : HB(G) = Yyel Eyellds (w) * dg (e)]?
multiple edges. More information can be found in Z ue ‘uell¥GA =/ * G
book 3. Another emerging field is chem-informatics, | "¢ ISt & I1"" Banhatti polynomials of a graph can

which improves the predictions of biological be calculated using the K hyper Banhatti indices as

activities using the structure property and follows:

quantitative  structure-activity relationships. If HB, (G, x,y)

emphasized chemicals are used in these studies, = Z |E,e| x [dc@tdg(e)]* ylde@)+dg(e))®
topological indices and physicochemical properties e

are used to predict bioactivity 5. A topological dW=d()

index is a number that describes a topological ~ 1B2(G.x.¥)

graph. This index was studied by both = Z |E, o |x [dc@ dg(@]? ) ldgv)+dg(e)]*
Mathematicians and chemists ©. Discusses how to we

construct 7 an m dimensional David derived and dw=a@)

In 1% V. R. Kulli introduced the modified first and

DDD. second Banhatti indices,

In 8 V. R. Kulli introduced the I** & 11" K Banhatti

C . 1
indices, MBi(G) = ) |Eyel =—~——=
B1(G) = SuelEyellds (w) + 1@ Z dg(u) + dg(e)
dg (e)] B, G) = ZuelEuel[dG (u) * dg (e)] 1

M — -
The Ist & 11" K Banhatti Polynomials are defined B,(6) = ZlE”el de(w) * dg(e)
as follows using K Banhatti indices: ue
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The modified I* & 11" K Banhatti polynomials are
defined as follows:

MB1(G'x,}’) 1

1
E | x dc+dg(e) ydg(w)+dg(e)
|Eyel y

ue
d(u)=d(v)

M Bz(G) =

1 1
|Eue | xdcW)+dg(e) yd(;(v)*dg(e)

d(u;lsed(v)
The sum and product connectivity Banhatti indices
1 are calculated using the following formulas:

1
SB(G) = ;Euel ST
1

PB(G):ZlE |

L Jdg () * dg(e)

The sum and product connectivity Banhatti
polynomials of G are defined as:

SB(G,x,y)
1

1
|E,el xx/da(u)+da(€) y\/dG(V)+dG(e)

ue
d(u)=d(v)

PB(G,x,y)

1 1
|Eel xVdcW+dg(e) deg(v)*dg(e)
ue
d(w)=d(v)
The graph G is generally first and second K
Banhatti indices *2 as:

BEG) = ) IFuelldg (@) + dg(©)]®
BE(G) = ) IFuellds () * dg(e)]®

ue
The general I & 11" K Banhatti polynomials of a
graph G using general first and second K Banhatti
indices as:
B{(G,x,y)

[de(W+dg(@)]* o ldg@)+dg(e)]?
|Eyel x y

ue
d(uw)=d(v)
B3 (G,x,y) =
ue |Eye| x!dc@*dg(e)]® 5 lde(w)+dg(e)]®
d(w)=d(v)
where a is a real number.
The F — K Banhatti index of G is defined as

follows:
FB(G) = ) |Fuel [do ()? + dg(e)?]

ue
Using the F — K Banhatti index, we define the F —
K Banhatti polynomial of G, as:
FB(G,x,y)

[de(W)?+dg(e)?] [de(W)?+dg(e)?]
|Eyel x y

ue
d(u)=d(v)
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A graph G is harmonic K Banhatti index 2 is
defined as:

2
Hy(G) = ;lEuel do) + dg (@)

The harmonic K Banhatti polynomial of a graph G
is defined as:

Hb(G’xr }’)

2 2
|Eye| xFc@+dGe) g +dg(e)

ue
d(uw)=dv)

The symmetric division K Banhatti index ** of G is
defined as:
de(u)  dg(e)
SDB(G =Z|E |[— 26e)
©= 21l [3;0) * dstw

The symmetric division K Banhatti polynomial of
G is defined as:
SDB(G,x,)

+

de(uw)_dg(e)] [dec(w) dg(e)
|Eue| X dG(e) 'dG(u) y dG(e) ' dG(U)

ue
d(uw)<d(v)

The inverse sum index K Banhatti index ** of a
graph G as

dg(uw)dg(e)
ISB(G) = Z E _—

The inverse sum K Banhatti polynomial of a graph
G as:
ISB(G,x,y)

dg(wdg(e)
dg(u)+dg(e)

d¢(w)dg(e)
dg(W)+dg(e)

N

|Eue|x[

ue
d(u)<d(v)

Result and Discussion

In this section, the topological properties of
the first dominating David derived (DDD)
Networks are determined, and several K-Banhatti
polynomials of the first type of DDD have been
computed (as shown in Fig.1).
First type of DDD Network
Consider the m dimensional David's star network.
Add a new vertex to each edge and divide it into
two parts. The David-derived network DD (m)of
dimension m will be obtained.

Figure 1. Domination David Derived network of
the first type
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D;(m), obtains the DDD network of the first type  The edge set of G in G = D, (m) can be divided into
of dimension m by connecting vertices of degree 2  six partitions based on the degree of end vertices of
of DDD(m) with an edge that is not in the  each edge, as shown in Table 1.

boundary.

Table 1. Edge degree partition of G

dg(u), dg(v);

e=uw€EWG) (22 (23 (2,4) (3.3) (3.4) (4.4)
No of edges 4dm 4m-—4 28m—16 9m?—13m+ 24 36m? — 56m + 24 36m? — 56m + 20
de(e) = dg(w) 2 3 4 4 5 6

+d;(v) — 2

Compute the generalized first K Banhatti

polynomial of a DDD network using the following

theorem.

Theorem 1:

If G = D, (n) is the DDD network, then

BA(G,x,y)=4mx** y** + (4m —4) x5 y5* +

(28m —16) x6“ y8% 4+ (9m2 — 13m + 24)
x7*y7% + (36m? — 56m +

24) x8% y°% + (36m? — 56m + 20) x10“ y10°

Proof: In aforesaid Table 1.

B (G,x,y)

= E,, xlde+dc(@]® yldg(m)+dg(e)]®

ue Figure 2. The first K Banhatti polynomial of

d(w)=d(v) = 4 2D @D Domination David Derived Network
(4m — 4) x@F" DT 4 Result 2:
(28m — 16)x 29" y(4+4) The first hyper K Banhatti polynomial D, (m) is (as
+(9am2 —13m + shown in Fig.3)
24) xBDT G 4 (36m2 — 56m + HB,(G,x,y) = 4m x° y1® + (4m — 4) x2> y3°
24)x3+5) % 5 (4+5)¢ + (28m — 16) x36 y%*
+(36m? — 56m + +(9m? — 13m + 24)x*° y*° +
20)x(4+6) % 5 (4+6) (36m? — 56m + 24) x%* y81

4) x®*y® % L (28m — 16)x©* y®¢ Soit s ais
+(9m? — 13m + 24)xM* yD* 4
(36m? — 56m + 24)x®* ¢
+(36m? — 56m +
20)x(10%,,00¢
The following are the results of Theorem 1.

Result 1:
The first K Banhatti polynomial D, (m) is (as
shown in Fig.2)
B1(G,x,y) = 4mx* y* + (4m — 4) x5 y°
+ (28m —16) x° y®
+(9m? —13m +24) x7 y”
+ (36m? — 56m + 24) x8 y°
+ (36m? — 56m + 20) x10 y10

Figure 3. The first hyper K Banhatti polynomial
of Domination David Derived Network

Result 3:

The Modified K Banhatti polynomial D,(m) is (as
shown in Fig.4)
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11 11
M B (G, x,y) = 4mxtys + (4m — 4) x5 y6
11

+ (28m — 16)x6 y8
1 1
+ (9m? — 13m + 24)x7 y7
1 1
+(36m? — 56m + 24)xs yo +
1 1

(36m?* — 56m + 20)x10 y1o

Figure 4. The First modified K Banhatti
polynomial of Domination David Derived
Network
Result 4:
The K Banhatti polynomial
D, (m) is (as shown in Fig.5)
1 1 1 1
SB(G,x,y) =4mxzyz + (4m —4) x5 yVe +
1 1 1 1
(28m — 16)xVe yv& + (9m? — 13m + 24)xV7 yV7
1 1
+(36m? — 56m + 24)xV8 y3 +
1 1
(36m? — 56m + 20)xvio yvio

sum connectivity

Figure 5. The First sum connectivity K Banhatti
polynomial of Domination David Derived
Network
Theorem 2:
If G isthe DDD network, then
BE(G,x,y) = 4m x® y®B
+ (4m—4) x© y°
+ (28m — 16)x®* y(16¢
+(9m? —13m +
24) x1D*AD* 4 (36m2 — 56m +
24)x(19)% 5,20 ¢

+ (36m? —56m +
20)x(24) a y(24) a
Proof: In aforesaid Table 1.
BZa(Gr X, y)
= E, e x1d6@) * dg(@)]® 5 [de(v) * dg(e)]

ue
d(u)=dv)

= 4m (@2 * y(Z*Z)a + (4m —
4) x@3® DY 4 (28m —
16)x(2*4) a y(4*4) @
+(9m? — 13m + 24)x 3D 53¢
+ (36m? — 56m
+24)x B9 545«
+(36m? —56m +
20)x(#6) % 5 (46) ¢
= 4mx®* y®* 4 (4m -
4) x©®% yM® 1 (28m — 16)x®* y(10¢
+ (9m? — 13m +
24) x(12% D% L 36m2 — 56m +
24)x(19) 7 y(@0OT 4 36m? —
S56m + 20)x@H y @0
The following are the results of Theorem 2.
Result 5:
The second K Banhatti polynomial D;(m) is (as
shown in Fig.6)
B,(G,x,y) = 4m x* y* + (4m — 4) x° y°
+ (28m —16) x8 y1°
+ (9m? — 13m + 24) x12 y12 +
(36m? — 56m + 24) x5 y20 +
(36m? — 56m + 20) x2* y24

Figure 6. The second K Banhatti polynomial of
Domination David Derived Network
Result 6:
The second hyper K Banhatti polynomial D, (m) is
(as shown in Fig.7)
HB,(G,x,y) = 4m x1 y16 + (4m — 4) x36 81
+ (28m — 16) x5* y256
+ (9m? — 13m + 24) x144 y144
+ (36m? — 56m + 24) x225 y400
+ (36m? — 56m + 20) x°76 y>7¢
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Figure 7. The second hyper K Banhatti
polynomial of Domination David Derived
Network

Result 7:

The modified K Banhatti polynomial D; (m) is (as
shown in Fig.8)

MB,(G,x,y) = 4m x% y% + (4m —4) x% y%
+ (28m — 16)x% y%
+ (9m? —13m + 24)x1_12 y1
+(36m? — 56m + 24)x35 y7o +
(36m? —56m + 20)xi yi

Ql=

Figure 8. The modified K Banhatti polynomial of
Domination David Derived Network

Result 8:

The Product connectivity K Banhatti polynomial
D, (m) is (as shown in Fig.9)

PB(G,x,y) = 4mx%y% + (4m —4) x%y% +
(28m — 16)x% y% + (9m? —13m +
24)xx/% y\/%

+(36m? — 56m + 24)x7T yTE +
(36m? — 56m + 20)xﬁ yxf%

Figure 9. The Product connectivity K Banhatti
polynomial Domination David Derived Network
Theorem 3:
Let G = D,(m) is the DDD network, then
FB(G,x,y) = 4mx8 y® + (4m — 4) x13 18
+ (28m — 16)x20 y32
+ (9m? — 13m + 24)x?2> y25
+ (36m? — 56m + 24)x3* y*! +

(36m? — 56m + 20)x°? y>2

Proof: Using Table 1.

FB(G,x,y)
— Eye xcW?+dg(e)? yda(v)2+da(e)2

ue
d(u)=d(v)

= 4m x2°+2° y2°42% | (4m —

4) x2°+3% 32432 L (ogm —
) 22+42y 42442 (
16)x y
+(9m? —13m +
24) x3°+4 3°+4* L (36m? — 56m +
24)x32+52 y42+52
+(36m2 — 56m + 20)x4 6" 47 +6?

=4mx8y® + (4m—4)x13y8 +
(28m — 16)x2° y32 + (9m? — 13m +
24)x?5 y?5 + (36m? — 56m +
24)x3* y*1 + (36m? — 56m +
20)x°2 y>2  (as shown in Fig.10).

) an

Figure 10: The F-K Banhatti
Domination David Derived Network

polynomial
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Theorem 4:
Let G =D;(m) is the DDD network, then

Hy(G,x,y) = 4mx2 yz + (4m—4) xs y3 +
(28m — 16)x3 y4 +(9m? —13m + 24) x7 y7

+ (36m? — 56m + 24)x4 y9 +
(36m? — 56m + 20)x§ yé

Proof: In aforesaid Table 1.
Hb (G, X, }’)

2 2
Eye xdcWw)+dg(e) yd(;(v)+dg(e)

ue
d(u)=d(v)
2 2
= 4m xz+z y2+2 + (4m —
4-) x2+3 y3+3 + (28m — 16)x2+4 y4+4
2 2
+(9m — 13m + 24)x3+4 y3+4 +
(36m —56m+ 24-)x3+5 y4+5
2 2
+(36m —56m + 20)xm ym
= 4mx2 yz + (4m —4) xsy3 +
(28m — 16)x3 y4 + (9m? — 13m + 24) x7 y7
+ (36m —56m+ 24)x4 y9 +

(36m? — 56m + 20)xs ys (as shown in Fig.11)

Figure 11. The Harmonic K Banhatti polynomial
Domination David Derived Network

Theorem 5:
Let G = D,(m) is the DDD network, then:

13
SDB(G,x,y) = 4mx?y? + (4m—4)x6 y?
5
+ (28m — 16)x2 y?
25 25
+ (9m? — 13m + 24)x12 y12

34 a1
+ (36m? — 56m + 24)x1s yz0 +
52 52

(36m?* — 56m + 20)x2+ yza
Proof: In aforesaid Table 1.
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SDB(G,x,y)
dg(w)_ dg(e) dg(v), dg(e)
xde(e) " dg(w) ydg(e) dg(v)

Eue

ue
d(uw)=dv) 2,2

—4mx2 zyz 2+ (4m—

4
4) x3 2 y3 3 + (28m — 16)x4 2 y4+1
3.4 3.4
+(9m?% — 13m + 24)x373 ya'3
3,5 4,5
+ (36m? —56m + 24)x5 3 y i
6

+(36m? — 56m + 20)xé"1 ye's
=4mx*y? + (4m— 4)x§y +

(28m — 16)x§ y2+ (9m? — 13m + 24) x12 yiz
+ (36m? — 56m + 24)x15 yzo +

52 52
(36m? — 56m + 20)x2+ y2« (as shown in Fig.12)

Figure 12. The symmetric division K Banhatti
polynomial Domination David Derived Network
Theorem 6:

Let G = D,(m) is the DDD network, then:

6 3
ISB(G,x,y) =4mxy + (4m —4)x5y2
4
+ (28m — 16)x3 y?
12 12
+ (9m? —13m+24)x7 y7

15 20
+ (36m? —56m + 24)xs yo +
12 12

(36m? —56m + 20)xs ys
Proof: Using Table 1. and definition.
ISB(G,x,y)

de(w) xdg(e) dg(w)xdg(e)
Eye xdc(e)+dg(w) ydc(€)+dc(17)

ue
d(u)<d(v)
2x2 2%z
= 4m xz+2 y2+2 + (4m —
2+3 3:3 2 4
4) x2+3 y3+3 + (28m — 16)xz+2 ya+a
344 3+4
+(9m? — 13m + 24) x3+2 ys+s +
3*5 4%5

(36m? — 56m + 24)x3+s ya+s
4%6 4%6
+(36m? — 56m + 20)x++6 ya+e
6 3
—4mxy + (dm—4)xsyz +

12 12

(28m — 16)x3 y2+ (9m? —13m + 24)x7 y7
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15 20

+ (36m? — 56m + 24)xs yo +
12

12
(36m? —56m + 20)xs ys. (asshown in Fig.13)

e

Figure 13. The inverse sum index K Banhatti
polynomial Domination David Derived Network

Conclusion:

In this paper, the K-Banhatti Polynomials
of the first type of David Derived Networks have
extended and computed the first type of DDD
network through topological indices. We plot the
results in K-Banhatti indices and several K-Banhatti
polynomials and their respective 3-D graphs.
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Llaggall A oY) s dida CLQAY gl 3 gaa Cilasia (lany
3 Mosa .y 2 g JlagS )il Llad 1Y ¢l gailai

Al ¢ Ui ¢ ol Jaem o(Jise) UL 5 sa il sal Araa) 4l 4080 (bl 1) !
Al 1SBL IS ¢ ) llaty ¢ Wy ) Aralas ¢(Dlpaly ) dpdadail] o slall A0S 2
gl (SIS ¢ oy glay a1 ST JlSaaal ) S0l dgaa ectilpaly ) anid 3
s ladal)

Lo ad e 3obe o daasdel) sl o) Daia sl el SISl pailadll s abesSl S el dasi i
& o> sl) Ll 5 Al Je il 5 Al oS jall 4k 5l Cliall agd (8 aalod A &bl A jall Al o g 1l ddasi ye
K- 2s0a Glaaxias (e paedl Clua s Riaggall (J5Y) 20 Qe Gl A sl (ol &) amy e Jseanll 23l all o2
gl V) adey Ak GISLE e J 5V g 53 e Banhatti

S agaal) soamte il gl leh - S piine o e Sodl Gl pige chiaseadl oY) miay At culSed sAcalidall cilalsl)
&S 2 0 e - (S Gl dine Sl e Aday Y 2 2 1Al
et (S Alilaie Aandl) ) yhisa o Sl Huls (S e ¢ Sl
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