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Abstract:

In this work, a joint quadrature for numerical solution of the double integral is presented. This method
is based on combining two rules of the same precision level to form a higher level of precision. Numerical
results of the present method with a lower level of precision are presented and compared with those performed
by the existing high-precision Gauss-Legendre five-point rule in two variables, which has the same functional
evaluation. The efficiency of the proposed method is justified with numerical examples. From an application
point of view, the determination of the center of gravity is a special consideration for the present scheme.
Convergence analysis is demonstrated to validate the current method.

Keywords: Center of gravity, Convergence analysis, Density function, Degree of Precision, Joint quadrature,

Maclaurin's series.
MSC 2010:65D30, 65D32

Introduction:

Numerical techniques are the best fit for
solving different integral problems. Recently,
different types of quadrature rules are used in the
field of numerical integration for the benefits of
science and technology. The method of mixing
guadrature rule is based on constructing a mixed
guadrature rule of higher precision by taking the
combination of quadrature rules of lower precision.
Many authors have developed joint quadrature for
numerical evaluation of real definite integrals. The
idea for joint quadrature rule is initiated * Later on,
the extension part for real definite integrals are
executed 2 -5, The electromagnetic field problems,
electric circuit problem, hybrid quadrature rule to
find the approximate solution of nonlinear Fredholm
integral equation with separable kernel and
approximate evaluation of real definite integrals are
demonstrated °-7 A mixed quadrature rule based on
Gaussian quadrature 8-° for approximate evaluation
of real definite integrals.

Let us consider real definite integrals of the form

f;f(x)dx =1 1

Now splitting the range into n equal parts with step
size h
a==xg,X1=%Xy+h, ..x,=D>b
[2fG)dx =1=h{ f(ph + xo)dp, 2
Where, x — xq = ph
Using forward interpolation method

n

2 2
I = f;f(x)dx = [nyo +%Ayo +n7(§—
) A2y0 + | h 3
Different Newton’s close type rules such as
Trapezoidal rule, Simpson’s % rd rule, Simpson’s %th

rule and Weddle’s rule are obtained by taking n =
1,2,3 and 6 respectively °. The Gaussian rule is also
represented by

7 fO)dx =1=05(b -
a) f_llf[(b+a)+2(b—a)t] dt 4
Where, [a, b] = [—1,1].

In the double integration the function f bounded over
the square region
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R={(x,y)ia<x<bc<y<d}

Where,

[0 8 F G y)dydx = 1 =

S @ mdgdn 5
n=05[d-c)y+(d+c)], {=05[0b—-a)x+
(b + a)]

Double integrals have various physical and

geometric applications, such as area, volume, and
moment of inertia about various axes. Certain
gravitational effects on an ejected object can be
described by the gravitational force on a point
particle located at the object's center of mass.
Centroid of the region can be seen as
the center of mass vector of that region in the case
that the mass density is constant.

When the mass density is constant it cancel
s out from the numerator and denominator of the ce
nter of mass.

Let f(x, y) is the density function of a distribution o
f mass M in a certain domain R

M= [f, dxdy 6

The co-ordinate (x,y) represents the center of
gravity.

o= 5 [y axay 7

_=%ﬂ;xf(x,y)dxdy 8

Encouraged by the excellent performance of
these methods, here is a plan for joint quadrature rule
for higher precision as well as application in physical
sciences for real definite integrals in two variables.
Here the novelty of our paper is that a quadrature rule
of lower precision seven has constructed taking the
joint effort of Lobatto four-point rule and Gauss
Legendre- three-point rule each of precision level
five which has compared with Gauss Legendre five-
point rule with higher precision nine and the former
rule produces better approximation than the later
even if the lower precision along with same
functional evaluations. Several numerical methods
like block method 25 finite element and
transformation technique -1°, B-spline collocation
20-23 and higher degree B-spline and block method 2+
% are also highly essential to the present topic.

The content of this paper is organized in
eight parts. Construction of basic quadrature rules,
Gauss Legendre five-point rule and joint quadrature
rule are appeared in second, third and fourth part
respectively. Fifth part contains error analysis.
Numerical results are displayed in sixth part. The
application part is focused on in the

seventh part and the eighth part contains the conclus
ions.
Basic Quadrature Rule

Let us discuss some basic Gaussian and
Lobatto quadrature rules 22
Gauss Legendre Three-point Quadrature Rule

Ress(f) = [ fF(0)dx = [g {f (- JB75> '
()

Gauss Legendre Five-point Rule

Res(f) =
2, fdx = % [(322 + 13V70){f (-6) +
F(®}+512£(0) + (322 — 13v70){f(—0) +

f(a)}] 10

where

5-2 [1—70 5+2 [1—70
6= , 0= |[——
9 9

Lobatto-four-point Quadrature Rule
J2 F@)dx = Rua(f) =5 [F(-1) + F(1) +

1 1
s{r (%) +7 (B 1
In the double integration the function f bounded over
the square region

Joint Quadrature Rule
Let us consider double integration for real definite
integral in two variables

S0 Faoyydxdy = 1(F) 12

Lobatto-four-point Quadrature Rule
The two variables representation of Lobatto-four-
point quadrature rule is obtained by 2%-%

1) = Rua(F) = - [{f (-1, -1 +

5f(-1,—%) +5f (-L%) + F(-1LD} +
{7 (1) 57 (-2 -3)
Sf (- +
)5 (o) 57 ()
+ (1)
(

=) +5f (1,

5 +

{Fa,-n+57(13

13

%)+ FD)}

Gauss Legendre-three-point Quadrature Rule
The two variables representation of Gauss Legendre-
three-point quadrature rule are given by 313

1790



Open Access
Published Online First: February, 2023

Baghdad Science Journal
2023, 20(5): 1789-1796

P-1SSN: 2078-8665
E-ISSN: 2411-7986

1) = Raua () =i[5 {Sf (—f—ﬁ) '
oF)ou-6 B

8{5f (Q—f;) +8£(0,0) +5f <0, \E)} +
() o) (. )

Where, Eqg. 13 and Eq. 14 are quadrature rule of
precision five. Hence

Rer3(f) + Egrs(f) = I(f) 15

Ria(f) + ELa(f) =1(f ) 16
Where, E;4(f) and E;;3(f) are the errors due to

Lobatto-four-point quadrature rule R;,(f) and
Gauss Legendre-three-point quadrature rule Rg;;3(f)
for approximating I(f) by Eq. 13 and Eq. 14
respectively.

Rewriting Eq. 12 by Maclaurin’s series

1) = [, 12, [£(0,0) + {x£1,0(0,0) + y£o, (0,00} +
~{x%£2,0(0,0) + 2xy£,1(0,0) + ¥*£,2(0,0)} +
~{x3£20(0,0) + 3x2y£,,(0,0) + 3xy?£; ,(0,0) +

Y fo3 (0,00} + —{x*£,0(0,0) + 4x%yf;1(0,0) +
6x7y%f55(0,0) + 4xy>f15(0,0) + y*£5,,(0,0)} +
={x%£50(0,0) + 5x%Y£,1(0,0) + 10x>y2£;,(0,0) +
10x2y3f,3(0,0) + 5xy* £, 4(0,0) + y5£,5(0,0)} +

= {x%£5,0(0,0) + 6x°y £, (0,0) + 15x*y2f, ,(0,0) +
20x3y3£;3(0,0) + 15x2y*f, ,(0,0) + 6xy°f; 5(0,0) +

Y fo,6 (0,00} + —{x7£,,0(0,0) + 7xy£51(0,0) +
21x5y%f; ,(0,0) + 35x*y3£, 5(0,0) +
35x3y4f3,4(0,0) + lezysfz,s (0,0) + 7xy6f1,6(0:0) +

Y7 for (0,00} + = {x*f5,0(0,0) + 8x7yf,,(0,0) +
28x°y%f,,(0,0) + 56x°y3f5(0,0) +
70x*y*f, 4(0,0) + 56x3y°f;5(0,0) +

28x2y°£,,6(0,0) + 8xy7,,7(0,0) + ¥*£0,5(0,0)}] dxdy
17
Integrating Eq. 17

I(F) = 4£0,0(0,0) + = [£2,0(0,0) + f52(0,0)] +
% [£2,0(0,0) + £5,4(0,0)] + é £22(0,0)

+ = [£22(0.0) + £24(0,0)] +
% [£6,0(0,0) + f4,6(0,0)] + 36% £1.4(0,0)

+—=—[f52(0,0) + f5,6(0,0)] +

% [£6,0(0,0) + £5,3(0,0)] + % [£10,0(0,0) +
f0,10(0,0)]

* 3x10 L [f52(0,0) + £,5(0,0)] +
= [£64(0,0) + £1,6(0,0)] 18

Eqg. 13 can also be represented as
R4 (f) = 4£0,0(0,0) + g [fz,o (0,0) + fo2 (0;0)] +
% [f4,0(0’0) + f0,4(0’0)] + %fz,z (0,0)
1;0 [£22(0,0) + £2,4(0,0)] +
Toxel [fe 0(0,0) + fo,6(0,0)] + 3600f4 4(0,0)
2;‘;168, [£6.2(0,0) + f2,6(0,0)] +

125x8! [fBO(O 0) +f08(0 0)] 19
Associating Eq. 18 and Eq. 19 in Eq. 15,
Epo(f) =I1(f) — Rp4(f)

= _% [£6,0(0,0) + f4,6(0,0)] —
256

25x0! [[faz(o;o) + fz,e(o;o)] + % [fg‘o(0,0) +

fos©0)] | 20
Eg. 14 can be expressed as

Re13(f) = 4£0,0(0,0) + % [£2,0(0,0) + f42(0,0)] +
~[f10(0.0) + £3,4(0,0)] + 5 £2,2(0,0)

+—[£22(00) + £,4(0,0)] +
25%6! [f60(0 0) + fo,6(0,0)] + 3600f4 4(0,0)

#2122 [ ,(0,0) + £,6(0,0)] +
783;?(8! [£5,0(0,0) + fo,6(0,0)] 21

Eg. 22 is obtained by associating Eqg. 18 and Eq. 21
with Eq. 16

EGL3(f) =1(f) — Ra3(f)
[fe 0(0,0) + f5,6(0,0)] +

= 25x71 75x8! [f62(0 0) +
286256

f2,6(0'0)] + Zo3125<8] [fs,o(o'o) + fo,s(o'o)]
22

Eq. 22 is quadrature rule of precision five.

Gauss -Legendre Five-point Rule
334 developed the compact form of Gauss-
Legendre five-point rule

1) = Reus(f) = o [{a{alf (P, —P) +
f(P,P)} +512f(P,0) + B{f (P, Q) +
fP,—W}} +{a{alf(~P,P) + f(—P,—P)} +
512f(—P,0) + B{f (—P,Q) + f(=P,—Q)}}} +
{s12{a{f(0,P) + £(0,~P)} +512f(0,0) +
BLF(0,Q) + £~} + {platr(@.P) +
f(Q.—ON} + {Blalf(—0.P) + F(—0,—P)} +
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512£(—Q,0) + B{F (-0, Q) + F(—0, ~O}}]
23

542 10 5_2 10
+297,Q= Zﬁ,a=(322—
13V70) and B = (322 + 13v70)

The two variable mathematical representations of
Eq. 23 are denoted by Eq. 24

where P =

Rers(f) = 4£0,0(0,0) + % [fo,z (0,0) + fz,o(O.O)] +
% [fo,4(0.0) + f4,0(0, 0)] + 1fz 2(0,0)

[f42(0 0) + f2,4(0, 0)]
L £ .(0,0)
[fez(o 0) + f2,6(0,0)] +
[£5,2(0,0) +

180

~[£50(0,0) + fo,6(0, 0)] +

7560
~[f6,0(0,0) + fo,5(0,0)] + ——

f2,8 (0;0)]

544320

+ === [f6,4(0,0) + £3,6(0,0)] +

2155%10! [flO 0(0 0) + fO 10(0 0)] 24

The error E;;5(f) due to Gauss Legendre-five-point
quadrature rule is expressed in Eq. 24

136 Egs(f) = 1(f) — Ras(f) =
ooty [100(0,0) + £o,10(0,0)] 25
Construction of Joint (Mixed) Quadrature Rule
Multiplying Eq. 22 by G) and adding it to Eq. 20,
the required joint (mixed) quadrature scheme is
1) = 5 BR() + 4Raus (D] + 7 [BEL() +

4E13()] 26
Where,
I(f) = Rpacrs(f) + Epagrs(f) 27

Rracz(f) = %[BRLtl-(f) + 4Rg13(f)] 28

Epacis(f) = %[3EL4 (f) + 4Eg13(f)] 29

Egs. 28 and 29 are known as joint rule and error due
to joint rule respectively.

Determination of Error

The error analysis is governed by Theorem 1 3%
Theorem 1:

The absolute error connected with R;,s.3(f) is
expressed as

| ELacrz ()l = 525 X 8l |f62(0 0) + f2,6(0, 0)|
+ 665024 0.0
4921875 X 8! [fo0(0.0)
+f0,8(0'0)|
Proof:

Associating Eqgs. 20 and 22 in Eq. 29

| EL4GL3(f)| = | I(f) - RL4GL3(f)|

= 22 1£52(0,0) + f,6(0,0)] +
492i23i:<8, |f8 0(0,0) + f55(0, 0)|
Lemma 1:
The truncated error bound
64M

| Eagrs(F)] < T75x71 ——In2 — M|
Where, N,z € [—1,1] and M =

121an |f7 o(x*) + fo, 7 (%, 3’)|
Proof:
ELa(f) = 75 >< o == [feo (1) + fo,s(11)]
Eg3(f) = 251>< o [feo(nz) + fo 6(772)]
Epscrz(f) = [3EL4(f) +4Eq3(]

- m [fe0(12,0) + fo,s(0,m2) —
fe,0(11,0) — fo,e(oﬂh)]
= o [T fr,0(x, 0)dx +

T 175x7!
J7% fo7(0,)dy]
= 175x7! fnn: fnz[fo 700%) + f7,0(*
;Y)]dxdy
| Eracrz(NI < 7o M 1, -l

Eqg. 30 is known as the error bound at points n, and
n, in the domain[—1,1].

Corollary 1:

128M

175%71 = 2 |Epagrs ()]
Proof:

From Eq.30 and |n; —n,| < 2 3738

128M
Tros = |ELa6L3(F)I

Numerical Verification of the Current Rule

It is found that joint quadrature rule executes a close
approximation to the analytical solution than Gauss
Legendre-five-point rules for different integrals with
the same twenty-five-point functional evaluations.

Example -1

The numerical results along with errors of Examle-1
are reported in Table. 1. Analytical result of joint rule
and Gauss-Legendre five-point quadrature rule are
depicted in Fig 1. The exact results of different
integrals are given below referring *°.
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11 )
sin(mx) .
h= f f 1+ cos2(y) dxdy fCOS(X) sin(y?) dxdy = 0
00 ,
= 0.375228493605129

O\ Nlﬁo\ 3

1
f x3cos(y) sin(y) dxdy
0

m T
4 4

I, = f f cos?(x + y) dxdy
00 =0.125000000000000

= 0.308425137534042

Table 1. (Comparison of numerical results of joint quadrature rule Rj4¢13(f) with Rgs(f) and
corresponding error of Example-1)

Integral  Lobatto-4- GauusLegendre-  joint Error due to GauusLegendre- Error due to
s(D pointrule 3- quadrature joint 5- GauusLegendre
R..(f) pointrule rule quadrature pointrule -5-point
Re3(f) Riacrz(f) rule Rers(f) rule Egs(f)
EL4-GL3(f)
I 0.23398168 0.2346846 0.23438339  0.14084510 0.23428366 0.1409448
8988131 70677885 2810848 0794281 7883072 25722052
I, 0.3084251 0.3084251 0.3084251 0.000000 0.3084251 0.000000
37534042 37534042 37534042 000000000 37534042 000000000
I3 0.0000000 0.0000000 0.0000000 0.0000000 0.00000000 0.0000000
00000000 00000000 00000000 00000000 0000000 00000000
|4 0.3006602 0.3006602 0.3006602 0.1756602 0.3006602 0.1756602
34425586 34425586 34425586 34425586 34425586 34425586
0.4 ' » ; In this section, application of joint quadrature rule is

implemented to determine the center of gravity
(x,¥) with different density function f (x, y).Table.
2, reports numerical results for exact and approxima
te

& / results of center of gravity E(x,y) and A(x,y) of
' Example-2.
0.15 / 1
0.1 , / 11
, / 1
0.05 / / ] = f f?dydx, M2
s&/// 00 y
% 0.05 0.1 0.15 '; 0.25 0.3 In4In3
Figure 1. Analytical result of joint rule and = f f e*tY dxdy
Gauss-Legendre five-point quadrature rule 0 0
1 2 2 3
Example-2 Mz = f f(y + e*)dydx, M, = ffxy dydx
00 00
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Table 2. (Numerical results for exact and approximate value of Center of gravity E(x,y) and A(%,7)) of Example-

2)

Center of gravity M  Exact Joint Exact value of center of Approximate value of Center
due to different resultM,,,, Qquadrature gravity of gravity A(X,y)
density rule My 13 E(x,y)
function f(x,y)
M, 0.6931471 0.6931426 (0.5000000000000000, (0.499907443859020,
80559945 15089163 0.442695040888964) 0.442704543380822)
M, 5.999999 6.0544074 (0.848392481493188, (0.854782304520975,
999999998 13522095 0.647918433002165) 0.650593621205011)
M, 5.436563 5.4365636 (0.551819161757163, (0.551819145832902,
656918091 46046245 1.122626480390481) 1.131156444843434)
M, 9.000000 9.000000 (1.333333333333333, (1.33333333333333,
000000000 000000000 2.000000000000000) 2.000000000000000)
Discussion: Particularly, the determination of center of gravity is

The joint quadrature method is based on
combining two rules of the same precision level to
form a higher level of precision. This scheme is
based on the mixing of two constituent rule of same
precision level seven to develop a higher degree of
precision nine. The present scheme may be extended
to obtain approximate solution of volume integrals in
Mechanics and also surface integral in Physics. The
approximate solution of analytic function in complex
plane is also obtained by current method. Aigher
precision rule always produces less error which is
clearly reporTable in ted s. 1 and 2. Fig. 1 depicts the
comparison of analytical results of joint quadrature
rule with Gauss-Legendre five-point quadrature rule.
From Fig. 1 and reported data of Table. 1, it is
observed that thejoint quadrature rule executes less
error than all constituent rules and good agreement
with Gaussian quadrature. The order of accuracy of
various quadrature is obtained as follows:
|ELa(F)| = |Egr3(F] = |EgLs ()] =
|Eraci3(f)l  The efficiency of proposed approach
is justified by determining the center of gravity.
Convergence analysis is demonstrated to validate the
current approach. The present scheme is also
extended to obtain approximate solution of analytic
function in complex plane.

Conclusions:

This paper is based on the mixing of two
constituent rules of same precision level seven to
develop a higher degree of precision nine. Numerical
results by present approach with lower precision rule
have presented and compared with the results
performed by existing Gauss Legendre five-point
rule with same functional evaluation with higher
degree of precision in two variables and noticed that
joint rule contributes better approximation to
constituent rules and excellent coincident with
analytical solution. The efficiency of proposed
approach is justified with numerical tests.

taken into account for application point of view.
Convergence analysis is executed to validate the
current approach. The present scheme may be
extended to obtain approximate solution of moment
of inertia, surface integrals and in volume integrals
in Mechanics and also in Physics. The approximate
solution of analytic function in complex plane is also
obtained by current method
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