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Abstract:  
A modified Leslie-Gower predator-prey model with a Beddington-DeAngelis functional response is 

proposed and studied. The purpose is to examine the effects of fear and quadratic fixed effort harvesting on 

the system's dynamic behavior. The model's qualitative properties, such as local equilibria stability, 

permanence, and global stability, are examined. The analysis of local bifurcation has been studied. It is 

discovered that the system experiences a saddle-node bifurcation at the survival equilibrium point whereas a 

transcritical bifurcation occurs at the boundary equilibrium point. Additionally established are the prerequisites 

for Hopf bifurcation existence. Finally, using MATLAB, a numerical investigation is conducted to verify the 

validity of the theoretical analysis and visualize the model dynamics.   
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Introduction: 
It is well understood, that any full assessment of 

a complex event involves a comprehensive 

examination of essential systems, not just sections of 

them. Therefore, many scientists have researched 

prey-predator interactions in theoretical ecology and 

evolutionary biology over the last few decades, and 

mathematical models have contributed significantly 

to better comprehending these complicated settings 1. 

In the early nineteenth century, Malthus appears to 

have constructed mathematical models to depict the 

patterns of prey-predator relationships. The well-

known Lotka-Volterra model was then adjusted to 

include a logistic growth factor for the prey  dna a 

number of population-dependent response functions, 

enabling realistic prey-predator interaction 

simulations 2, 3. 

The application of fear impacts also enhanced 

the birth rate of prey animals. In fundamental 

ecology and environmental biology, the impact of 

fear has been extensively investigated 4-6. Fear of 

predators may be equally as significant as direct 

consumption; in addition to direct ingestion, fear of 

predators has been demonstrated in wild animals 

living in social groups to increase awareness and 

reduce time spent hunting when population size 

drops7-10. When averaged across numerous trials, the 

effect of population-level anxiety on prey survival 

could be equivalent to that of direct predator eating. 

Prey species' physiological states may be influenced 

by predator anxiety, and prey species may face 

problems and losses as a result. In the Greater 

Yellowstone ecosystem, for example, wolves (Canis 

lupus) alter the reproductive physiology of deer 

(Cervus elaphus).  

Recently, the impact of anxiety on the system 

dynamics of prey-predator models has piqued 

researchers' interest 11, 12. Sarkar et al 13 constructed 

and tested a prey-predator system with Holling type-

II functional response that included the cost of fear 

in prey reproduction using a new suggested fear 

function, which is used in our investigation. They 

demonstrated that prey-predator interactions can be 

stabilized by significant anti-predator reflexes. With 

fear, Maghool et al 14 built and investigated a 

tritrophic Leslie-Gower food-web system. Because 

of the prey group's protective capability, the Sokol-

Howell type of function response is employed to 

describe the predation process. The influence of 

predation anxiety on the dynamics of the three 

species food chain system at the first and second 

levels was proposed and examined by Maghool et al 

15. However, Rahi et al 16 looked at the dynamics of a 
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prey-predator model that included two facts: the fear 

effect and predator stage structure. 

       On the other hand, harvesting, as well as other 

biological factors such as the Allee effect and refuge, 

are important and common events17-20. Recently, 

researchers have looked into how refuge, Allee, and 

intra-specific competition among predators may 

impact the stability, bifurcation, and equilibria that 

affect the dynamic of prey-predator systems 21. They 

concluded that an increase in intraspecific 

competition coefficient values stabilizes the dynamic 

system. On the other hand, it is noted that the 

dynamical system becomes unstable as the Allee 

effect intensity values increase. Because natural 

systems are mostly renewable, harvesting is widely 

used in fisheries. In an exploited fishing system with 

two interacting species, researchers are looking into 

harvesting either prey or predator species, or both 

prey and predator species. There have been a variety 

of harvesting tactics used. Some of them used fixed 

harvesting, fixed effort harvesting (or proportional 

harvesting), and continuous threshold harvesting, 

while others examined nonlinear harvesting 22-25. 

Leslie-Gower is a prey-predator model where the 

predator's carrying capacity is dependent on the 

amount of prey, highlighting that both prey and 

predator growth rates have upper limits. In the Lotka-

Volterra model, this concept was not considered. 

These upper limits can be reached in perfect 

conditions: for predators, whenever the quantity of 

prey per predator is large, and for prey, whenever the 

quantity of predators (and presumably prey) is low. 

The study of the behavior of Leslie-Gower prey-

predator systems 22, 26-28 has been taken up by a 

number of scholars.  

            It is common knowledge that changing a 

fundamental parameter through a critical value 

causes a dynamic system's stability to change. A 

bifurcation occurs when the parameter crosses a 

critical value. When a bifurcation occurs close to an 

attractor, it is referred to be local. If only one 

parameter causes the bifurcation, it is referred to as 

codimension one. It is referred to as codimension two 

when the bifurcation is caused by the simultaneous 

change of two parameters. The local bifurcation 

caused by one parameter value is explored in this 

work since the biological elements in the 

environment are always changing. As a consequence, 

a prey-predator system based on the Beddington-

DeAngelis functional response will be built in this 

work. The Leslie-Gower notion, which assumes the 

predator has access to extra food sources, will 

increase the predator population's birth rate. Our goal 

is to explore how fear and fixed effort harvesting 

affect the recommended model's dynamical behavior 

through the investigation of their stability and 

bifurcation. 

 

Model Construction 

The construction of the mathematical model that 

simulates the harvested Leslie-Gower prey-predator 

real-world system is described as follows. Let 𝑁(𝑇) 
and 𝑃(𝑇) represent the density of prey and predator 

at time 𝑇 respectively. It started with the modified 

Lotka-Volterra type prey-predator system: 

 

𝑑𝑁

𝑑𝑇
= (𝑟 − 𝑏𝑁)𝑁 − 𝑓(𝑁, 𝑃)𝑃,

𝑑𝑃

𝑑𝑇
= 𝑓(𝑁, 𝑃)𝑃 − 𝑑𝑝,                

                       1 

where the function 𝑓(𝑁, 𝑃) represents the functional 

response and the parameters 𝑟, 𝑏, and 𝑑 stand for 

intrinsic growth rate, intraspecific competition rate, 

and predator natural death rate respectively. Model 1 

is studied by many researchers using different types 

of functional responses. Later on, many authors 

studied the following famous Leslie prey-predator 

system26-28: 
𝑑𝑁

𝑑𝑇
= (𝑟 − 𝑏𝑁)𝑁 − 𝑓(𝑁, 𝑃)𝑃,

𝑑𝑃

𝑑𝑇
= 𝑃 [𝑢 −

𝑣𝑃

𝑁
].                        

                          2 

The parameter 𝑢 is the intrinsic growth rate of the 

predator. The parameter 𝑣 is a measure of the food 

quantity that the prey provides converted to predator 

birth. The term 𝑃 𝑁⁄  is the Leslie-Gower term that 

measures the loss in the predator population due to 

the rarity (per capita 𝑃 𝑁⁄ ) of its favorite food. The 

predator consumes the prey according to the 

functional response 𝑓(𝑁, 𝑃) and carries capacity 

𝑁 𝑣⁄ . 

The predator 𝑃 can transfer over to other populations 

in the event of acute scarcity, according to Aziz-

Alaoui et al 26, but its growth will be limited because 

its favorite food 𝑁 is not abundant. They offered the 

following prey-predator model with a modified 

Leslie-Gower strategy to handle such a problem by 

adding a positive constant 𝐾 to the denominator: 
𝑑𝑁

𝑑𝑇
= (𝑟 − 𝑏𝑁)𝑁 − 𝑓(𝑁, 𝑃)𝑃,

𝑑𝑃

𝑑𝑇
= 𝑃 [𝑢 −

𝑣𝑃

𝐾+𝑁
].                    

                         3 

Here, the parameter 𝐾 measures the extent to which 

the environment protects the predator 𝑃. System 3 

with Holling type-II functional response was 

investigated in 26, but system 3 with Bedington-

DeAngelis type of functional response was 

investigated in 27. In light of the above discussion, 

model 3 provided in 27 is modified to include the fear 

cost proposed by Sarkar et al 13 in the prey equation, 

as well as assessing the impact of quadratic fixed 

effort harvesting on the overall model. As a result, 

the dynamics of a prey-predator system like this can 

be described as follows: 
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𝑑𝑁

𝑑𝑇
= 𝑁 [𝑟1 (𝑚 +

𝑛(1−𝑚)

𝑛+𝑃
) − 𝑑 − 𝑏𝑁 −

𝑎𝑃

𝑐+𝑁+𝑒𝑃
− 𝑞1𝐸𝑁] = 𝑁𝑓(𝑁, 𝑃),

𝑑𝑃

𝑑𝑇
= 𝑃 [𝑟2 (1 −

𝑒𝑃

𝐾+𝑁
) − 𝑞2𝐸𝑃] = 𝑃𝑔(𝑁, 𝑃),                                             

                                        4 

where 𝑁(0) ≥ 0, and 𝑃(0) ≥ 0. While the 

parameters are described in Table 1: 

 

Table 1. Parameters description 
Parameter Description 

𝑟1, 𝑟2 
The birth rate of prey population and 

predator population respectively. 

𝑚 
The minimum cost of fear with 𝑚 ∈
[0,1]. 

𝑛 The level of fear. 

𝑑 The natural death rate of the prey. 

𝑏 
Decay rate due to intraspecific 

competition. 

𝑎 Attack rate. 

𝑐 Half saturation constant. 

𝑒 

A measure of the food quantity that the 

prey provides converted to predator 

birth. 

𝑞1, 𝑞2 
The catchability coefficients of the 

prey and predator respectively. 

𝐸 
The effort that is applied to harvest the 

prey and predator. 

𝐾 
The carrying capacity of the predator 

in the absence of their prey. 

 

Theorem 1: System 4 is a positively invariant. 

Proof: Solving the system 4, using the positive 

conditions (𝑁(0), 𝑃(0)) yields that:  

𝑁(𝑇) = 𝑁(0) 𝑒

∫ [
𝑟1(𝑚+

𝑛(1−𝑚)
𝑛+𝑃(𝑠)

)−𝑑−𝑏𝑁(𝑠)

−
𝑎𝑃(𝑠)

𝑐+𝑁(𝑠)+𝑒𝑃(𝑠)
−𝑞1𝐸𝑁(𝑠)

]𝑑𝑠
𝑡

0

 

𝑃(𝑇) = 𝑃(0)𝑒
∫ [𝑟2(1−

𝑒𝑃(𝑠)
𝐾+𝑁(𝑠)

)−𝑞2𝐸𝑃(𝑠)]𝑑𝑠
𝑡

0  

It can be deduced from the preceding two equations 

that any solution in the interior of ℝ+
2  that starts with 

positive initial conditions (𝑁(0), 𝑃(0)) remains 

there for all future time.                  ■ 

Theorem 2: All the solutions of system 4 are 

uniformly bounded. 

Proof: From the first equation of system 4, it is 

observed that 
𝑑𝑁

𝑑𝑡
≤ (𝑟1 − 𝑑)𝑁 − 𝑏𝑁

2. 

Hence, solving the above differential inequality 

gives that: 

𝑁(𝑡) ≤
𝑟1−𝑑

𝑏[1−𝑒−(𝑟1−𝑑)𝑡]+(𝑟1−𝑑)𝑁(0)𝑒
−(𝑟1−𝑑)𝑡

. 

Therefore, as 𝑡 →∞ , it is obtained 𝑁(𝑡) ≤
𝑟1−𝑑

𝑏
=

𝛽 > 0, because the birth rate is biologically bigger 

than the death rate for the survival species. Now, 

using the bound of the prey in the second equation of 

system 4, it is obtained that: 
𝑑𝑃

𝑑𝑡
≤ 𝑟2𝑃 − [

𝑟2𝑒

𝐾+𝛽
+ 𝑞2𝐸]𝑃

2 = 𝑟2𝑃 − 𝛿𝑃
2. 

Similarly, solving the last differential inequality 

gives: 

 𝑃(𝑡) ≤
𝑟2

𝛿 [1−𝑒−𝑟2𝑡]+𝑟2𝑁(0)𝑒
−𝑟2𝑡

. 

Therefore, as 𝑡 →∞ , it is obtained 𝑃(𝑡) ≤
𝑟2

𝛿
. 

Consequently, the proof is done.     ■ 

Keeping the above in mind, system 4 has continuous 

with continuous partial derivative interaction 

functions in their domain ℝ+
2 , Therefore, system 4 

with a given initial condition has a unique solution.  

Equilibria and Their Stability 

There are at most four nonnegative equilibrium 

points in the system 4, and the present conditions and 

their forms are as follows: 

The trivial equilibrium point (TEP) is always present 

when 𝑍1 = (0,0). 
The predator-free equilibrium point (PDFEP) given 

by 𝑍2 = (𝑁̅, 0), where 𝑁̅ =
𝑟1−𝑑

𝑏+𝑞1𝐸
, exists solely on 

the horizontal axis if and only if  

 𝑑 < 𝑟1.                              5 

While the prey-free equilibrium point (PYFEP) is 

expressed by 𝑍3 = (0, 𝑃̃), where 𝑃̃ =
𝑟2𝐾

𝑟2𝑒+𝐾𝑞2𝐸
,  

always exists.  

Finally, the survival equilibrium point (SEP), which 

is written as 𝑍4 = (𝑁
∗, 𝑃∗), where   

𝑁∗ =
𝑒𝑟2𝑃

∗−𝐾(𝑟2−𝐸𝑞2𝑃
∗)

𝑟2−𝐸𝑞2𝑃
∗ .                              6 

While 𝑃∗ represents the positive root of the 

following fourth-order polynomial equation. 

𝐴4𝑃
4 + 𝐴3𝑃

3 + 𝐴2𝑃
2 + 𝐴1𝑃 + 𝐴0 = 0,       7 

where the coefficients 𝐴𝑖;   𝑖 = 0,1,2,3,4 of Eq.7 are 

given as: 
𝐴4 = 𝐸𝑞2[𝐸𝑞2(𝑎 − 𝑒(𝑚𝑟1 − 𝑑))

−𝑒(𝑏 + 𝐸𝑞1)(𝐸𝑞2𝐾 + 𝑒𝑟2)]
, 

 

𝐴3 = 𝐸
2𝑞2

2[(𝑐 − 𝐾)[𝑑 − 𝐾(𝑏 + 𝐸𝑞1) −𝑚𝑟1] + 𝑛[𝑎 − 𝑒(𝑟1 − 𝑑)]                   

−𝑒𝐾𝑛(𝑏 + 𝐸𝑞1)] − 𝐸𝑞2[2𝑎𝑟2 + 𝑏𝑐𝑒𝑟2 + 𝑏𝑒
2𝑛𝑟2 − 4𝑒𝐾𝑟2(𝑏 + 𝐸𝑞1)

+𝑒𝐸𝑞1𝑟2(𝑐 + 𝑒𝑛) − 3𝑒𝑟2(𝑚𝑟1 − 𝑑)] + 2𝑒
2𝑟2

2(𝑏 + 𝐸𝑞1),
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𝐴2 = 𝐸
2𝑞2

2𝑛(𝑐 − 𝐾)[𝑑 − 𝐾(𝑏 + 𝐸𝑞1) − 𝑟1]                                                                          

−𝐸𝑞2[2𝑟2(𝑐 − 𝐾)(𝑑 − 𝐾(𝑏 + 𝐸𝑞1) − 𝑚𝑟1) + 2𝑎𝑛𝑟2 + 𝑏𝑐𝑒𝑛𝑟2                  

  +3𝑒𝑛𝑟2(𝑑 − 𝑟1) − 4𝑒𝐾𝑛𝑟2(𝑏 + 𝐸𝑞1) + 𝑐𝑒𝐸𝑛𝑞1𝑟2] + 𝑟2
2[𝑎 + 𝑏𝑐𝑒 + 2𝑑𝑒

   −3𝑏𝑒𝐾 + 2𝑏𝑒2𝑛 + 𝑐𝑒𝐸𝑞1 − 3𝑒𝐸𝐾𝑞1 + 2𝑒
2𝐸𝑛𝑞1 − 2𝑒𝑚𝑟1],

 

𝐴1 = −2𝐸𝑛𝑞2𝑟2(𝑐 − 𝐾)[𝑑 − 𝐾(𝑏 + 𝐸𝑞1) − 𝑟1]                                               

+𝑟2
2[(𝑐 − 𝐾)[𝑑 − 𝐾(𝑏 + 𝐸𝑞1) − 𝑚𝑟1]                                        

+𝑎𝑛 + 𝑏𝑐𝑒𝑛 − 3𝑏𝑒𝐾𝑛 + 2𝑒𝑛(𝑑 − 𝑟1) + 𝑒𝐸𝑛𝑞1(𝑐 − 3𝐾)],

 

𝐴0 = 𝑛𝑟2
2(𝑐 − 𝐾)[𝑑 − 𝐾(𝑏 + 𝐸𝑞1) − 𝑟1]. 

 

The discard rule of the sign will be used in Eq.7 in 

order to determine the sufficient criteria for having 

one positive real root. Consequently, the SEP exists 

in the interior of ℝ+
2  uniquely if and only if the 

following requirements are met. 

 0 < 𝐾(𝑟2 − 𝐸𝑞2𝑃
∗) < 𝑒𝑟2𝑃

∗,                           8 

with one set of the following sets of sufficient 

conditions. 
𝐴4 < 0, 𝐴3 < 0, 𝐴1 > 0, 𝐴0 > 0
𝐴4 > 0, 𝐴3 > 0, 𝐴1 < 0, 𝐴0 < 0

𝐴4 < 0, 𝐴3 < 0, 𝐴2 < 0, 𝐴1 < 0, 𝐴0 > 0
𝐴4 < 0, 𝐴3 > 0, 𝐴2 > 0, 𝐴1 > 0, 𝐴0 > 0
𝐴4 > 0, 𝐴3 > 0, 𝐴2 > 0, 𝐴1 > 0, 𝐴0 < 0
𝐴4 > 0, 𝐴3 < 0, 𝐴2 < 0, 𝐴1 < 0, 𝐴0 < 0

𝐴4 < 0, 𝐴3 < 0, 𝐴1 > 0, 𝐴0 = 0
𝐴4 < 0, 𝐴2 > 0,𝐴1 > 0, 𝐴0 = 0
𝐴4 = 0, 𝐴3 < 0, 𝐴2 < 0, 𝐴0 > 0
𝐴4 = 0, 𝐴3 < 0, 𝐴1 > 0, 𝐴0 > 0 }

 
 
 
 

 
 
 
 

.      9 

 

Other sets of conditions may exist too, 

depending on the sign of the coefficients of Eq. 7. 

The local stability analysis is investigated in the 

following by computing the Jacobian matrix of 

system 4 at each equilibrium point. The Jacobian 

matrix at the point (𝑁, 𝑃) is calculated as follows: 

 𝐽(𝑁, 𝑃) = [
𝑁

𝜕𝑓

𝜕𝑁
+ 𝑓(𝑁, 𝑃) 𝑁

𝜕𝑓

𝜕𝑃

𝑃
𝜕𝑔

𝜕𝑁
𝑃
𝜕𝑔

𝜕𝑃
+ 𝑔(𝑁, 𝑃)

],      10 

where 
𝜕𝑓

𝜕𝑁
= −𝑏 +

𝑎𝑃

Λ2
− 𝑞1𝐸, 

𝜕𝑓

𝜕𝑃
= −

𝑟1𝑛(1−𝑚)

(𝑛+𝑃)2
−

𝑎(𝑐+𝑁)

Λ2
, 
𝜕𝑔

𝜕𝑁
=

𝑟2𝑒𝑃

(𝐾+𝑁)2
, and  

𝜕𝑔

𝜕𝑃
= −𝑞2𝐸 −

𝑟2𝑒

𝐾+𝑁
 with 

Λ = 𝑐 + 𝑁 + 𝑒𝑃. 

Accordingly, for TEP the Jacobian matrix becomes 

 𝐽(𝑍1) = [
𝑟1 − 𝑑 0
0 𝑟2

]. 

Hence the eigenvalues of 𝐽(𝑍1) are 𝜆11 = 𝑟1 − 𝑑, 

and 𝜆12 = 𝑟2 > 0. Thus, the TEP is an unstable node 

when 𝑟1 > 𝑑, and it is a saddle point when 𝑟1 < 𝑑. 

For the PDFEP, the Jacobian can be written as: 

 𝐽(𝑍2) = [
−(𝑟1 − 𝑑) 𝑁̅ (

−𝑟1(1−𝑚)

𝑛
−

𝑎

𝑐+𝑁̅
)

0 𝑟2
]. 

Therefore, 𝐽(𝑍2) has the following eigenvalues 

𝜆21 = −(𝑟1 − 𝑑) < 0 due to the existing condition 5, 

and 𝜆22 = 𝑟2 > 0. Thus, the PDFEP is a saddle 

point. 

The Jacobian matrix at the PYFEP can be written as:  

  𝐽(𝑍3) = [
𝑟1 (𝑚 +

𝑛(1−𝑚)

𝑛+𝑃̃
) − 𝑑 −

𝑎𝑃̃

𝑐+𝑒𝑃̃
0

𝑟2𝑒𝑃̃
2

𝐾2
−𝑟2

].    11 

Therefore, 𝐽(𝑍3) has the following eigenvalues 

𝜆31 = 𝑟1 (𝑚 +
𝑛(1−𝑚)

𝑛+𝑃̃
) − 𝑑 −

𝑎𝑃̃

𝑐+𝑒𝑃̃
, and  𝜆31 =

−𝑟2 < 0. Accordingly, the PYFEP is locally 

asymptotically stable if and only if the following 

requirement is met. 

 𝑟1 (𝑚 +
𝑛(1−𝑚)

𝑛+𝑃̃
) < 𝑑 +

𝑎𝑃̃

𝑐+𝑒𝑃̃
.                       12 

Finally, system 4 has the following Jacobian matrix 

at the SEP: 
𝐽(𝑍4) =                                                                                       

[
𝑁∗ (−𝑏 +

𝑎𝑃∗

Λ∗2
− 𝑞1𝐸) −𝑁∗ (

𝑟1𝑛(1−𝑚)

(𝑛+𝑃∗)2
+
𝑎(𝑐+𝑁∗)

Λ∗2
)

𝑟2𝑒𝑃
∗2

(𝐾+𝑁∗)2
−𝑃∗ (𝑞2𝐸 +

𝑟2𝑒

𝐾+𝑁∗
)

]
,       13 

where Λ∗ = 𝑐 + 𝑁∗ + 𝑒𝑃∗. Direct computation 

shows that 𝐽(𝑍4) has two negative real parts 

eigenvalues, and hence the SEP is locally 

asymptotically stable if the following sufficient 

condition holds. 

 
𝑎𝑃∗

Λ∗2
< 𝑏 + 𝑞1𝐸.                                  14 

Permanence 

A fundamental subject in mathematical 

biology is the long-term survival of each component 

of a system of interacting components, which is often 

a population in an ecological context. Long-term 

survival has been defined using a variety of criteria. 

The concept of permanency interests us, which is 

defined as the study of each species' long-term 

survival in a prey-predator system. In this section, the 

Gard technique, which is based on building 

Lyapunov-like persistence functions 29, is applied. 

The following theorem establishes the conditions 

that guarantee the persistence of the system 4. 

Theorem 3: System 4 is uniformly persistent if and 

only if the following condition is met. 

 𝑟1 (𝑚 +
𝑛(1−𝑚)

𝑛+𝑃̃
) > 𝑑 +

𝑎𝑃̃

𝑐+𝑒𝑃̃
.                   15 

Proof: Define the function 𝐿(𝑁, 𝑃) = 𝑁𝛼𝑃𝜏, where 

𝛼 and 𝜏 are positive constants. 

Clearly, 𝐿(𝑁, 𝑃) > 0 for all (𝑁, 𝑃) ∈ ℝ+
2 , and 

𝐿(𝑁, 𝑃) = 0 for all (𝑁, 𝑃) ∈ 𝜕ℝ+
2 , where 𝜕ℝ+

2  

denotes the boundary of ℝ+
2 . Therefore, 𝐿(𝑁, 𝑃) is 
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known as a claimed persistence function or termed 

average Lyapunov function in the sense of the Gard 

approach. Then, according to Gard, the proof is done 

if and only if  𝜑(𝑁, 𝑃) =
𝐿′(𝑁,𝑃)

𝐿(𝑁,𝑃)
 is positive for all 

points (𝑁, 𝑃) that belong to the 𝜔 −limit sets of the 

system 4 in the 𝜕ℝ+
2 . Direct computation gives that: 

 𝐿′(𝑁, 𝑃) = 𝑃𝜏𝛼𝑁𝛼−1
𝑑𝑁

𝑑𝑡
+𝑁𝛼𝜏𝑃𝜏−1

𝑑𝑃

𝑑𝑡
. 

Then 

 𝜑(𝑁, 𝑃) =
𝐿′(𝑁,𝑃)

𝐿(𝑁,𝑃)
=

𝛼

𝑁

𝑑𝑁

𝑑𝑡
+

𝜏

𝑃

𝑑𝑃

𝑑𝑡
. 

Now, since the TEP, PDFEP, and PYFEP are the 

only points that belong to the 𝜔 −limit sets of system 

4 in the boundary of the positive quadrant. Moreover, 

direct calculation shows that: 

 𝜑(𝑍1) = 𝛼(𝑟1 − 𝑑) + 𝑟2𝜏. 
 𝜑(𝑍2) = 𝑟2𝜏. 

 𝜑(𝑍3) = 𝛼 [𝑟1 (𝑚 +
𝑛(1−𝑚)

𝑛+𝑃̃
) − 𝑑 −

𝑎𝑃̃

𝑐+𝑒𝑃̃
]. 

Clearly, 𝜑(𝑍1) > 0 for any suitable choice of 

positive constants 𝛼 and 𝜏. While 𝜑(𝑍2) > 0 always. 

However, 𝜑(𝑍3) > 0 provided that condition 15 is 

satisfied. Hence the proof is done.   

Global Stability Analysis 

The global dynamics of system 4 are investigated 

in the following theorems. The attractive basin of 

trajectories of a dynamical system is either the state 

space or a specific region in the state space that is the 

defining region of the system's state variables, 

according to global stability. In other words, global 

stability implies that, regardless of initial conditions, 

all trajectories eventually tend to the system's 

attractor. The global stability of most biological 

systems, such as gene regulatory systems, is 

required. 

Theorem 4: Assume that the PYFEP is locally 

asymptotically stable then it is globally 

asymptotically stable if and only if the following 

requirement is satisfied 

 𝑟1 < 𝑑.                                                       16 

Proof: Let 𝑉1(𝑁, 𝑃) = 𝑁 + [𝑃 − 𝑃̃ − 𝑃̃𝑙𝑛 (
𝑃

𝑃̃
)] be a 

positive definite real-valued function in the region 

𝐷1 = {(𝑁, 𝑃) ∈ ℝ+
2 : 𝑁 ≥ 0, 𝑃 > 0}. Then, it is 

deduced that 

 

𝑑𝑉1
𝑑𝑇

=
𝑑𝑁

𝑑𝑇
+ (

𝑃 − 𝑃̃

𝑃
)
𝑑𝑃

𝑑𝑇
= 𝑟1𝑚𝑁 + 𝑟1(1 − 𝑚)𝑁

𝑛

𝑛 + 𝑃
− 𝑑𝑁 − 𝑏𝑁2 −

𝑎𝑁𝑃

𝑐 + 𝑁 + 𝑒𝑃

−𝑞1𝐸𝑁
2 − (𝑃 − 𝑃̃)2 [

𝑟2𝑒𝐾

(𝐾 + 𝑃)(𝐾 + 𝑃̃)
]

 

 

Further simplification yields:  

              
𝑑𝑉1

𝑑𝑇
≤ (𝑟1 − 𝑑)𝑁 − (𝑃 − 𝑃̃)

2 [
𝑟2𝑒𝐾

(𝐾+𝑃)(𝐾+𝑃̃)
]. 

Clearly, 
𝑑𝑉1

𝑑𝑇
 is negative definite provided that 

condition 16 holds. Hence, the PYFEP is globally 

asymptotically stable.                   ■ 

Theorem 5: Assume that the SEP is locally 

asymptotically stable then it is globally 

asymptotically stable if and only if the following 

conditions are met. 

  
𝑎𝑃∗

𝑐Λ∗
< 𝑏 + 𝑞1𝐸,                              17 

 𝛿12
2 < 4𝛿11𝛿22,                                18 

where all the symbols are described in the proof. 

Proof: Let 𝑉2(𝑁, 𝑃) = [𝑁 − 𝑁
∗ −𝑁∗𝑙𝑛 (

𝑁

𝑁∗
)] +

[𝑃 − 𝑃∗ − 𝑃∗𝑙𝑛 (
𝑃

𝑃∗
)] be a positive definite real-

valued function on the region 𝐷2 = {(𝑁, 𝑃) ∈
ℝ+
2 :𝑁 > 0, 𝑃 > 0}. Then, after some calculation, it's 

reached that:  

 

𝑑𝑉2

𝑑𝑇
= −𝛿11(𝑁 − 𝑁

∗)2 − 𝛿22(𝑃 − 𝑃
∗)2

−𝛿12(𝑁 − 𝑁
∗)(𝑃 − 𝑃∗)

, 

where 𝛿11 = [𝑏 + 𝑞1𝐸 −
𝑎𝑃∗

ΛΛ∗
],  

 𝛿22 = [𝑞2𝐸 +
𝑒

𝐾+𝑁
],  

 
𝛿12 = [

𝑟1𝑛(1−𝑚)

(𝑛+𝑃)(𝑛+𝑃∗)
+
𝑎(𝑐+𝑁∗)

ΛΛ∗

−
𝑒𝑃∗

(𝐾+𝑁)(𝐾+𝑁∗)
]

. 

Therefore, using the above-given conditions 17-18, 

the value of 
𝑑𝑉2

𝑑𝑇
 becomes negative definite and then 

the proof is complete.             ■ 

 

Bifurcation Analysis 

Bifurcation theory is the study of changes in the 

qualitative structure of a set of curves, such as the 

integral curves of a set of vector fields or the 

solutions of a set of differential equations. A 

bifurcation occurs when a little smooth shift in a 

system's parameter values causes a significant 

qualitative change in its behavior. It is most 

commonly used in the mathematical study of 

dynamical systems. Bifurcation can be divided into 

two types. Local bifurcations, which can be studied 

in detail as parameters cross critical thresholds by 

observing changes in the local stability properties of 

equilibria, periodic orbits, or other invariant sets; and 

global bifurcations, which commonly occur when the 

system's larger invariant sets interfere with each 

other or with the system's equilibria. They can't be 

found only by looking at the stability of the 

equilibria. 
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In this section, an investigation of the occurrence of 

local bifurcation is carried out. Rewrite system 4 as: 

𝑑𝑍

𝑑𝑇
= 𝐹(𝑁, 𝑃), with 𝑍 = (

𝑁
𝑃
), and 𝐹 = (

𝑁𝑓(𝑁, 𝑃)
𝑃𝑔(𝑁, 𝑃)

). 

Therefore, direct computation gives that, the second 

directional derivative of 𝐹 can be written: 

 𝐷2𝐹(𝑍, 𝜇). (𝑉, 𝑉) = (
𝑐11
𝑐21
),                         19 

where 

 

𝑐11 = −
2𝐸(𝑏+𝑞1)Λ

3+2𝑎𝑃(2𝑐+2𝑒𝑃+3𝑁)

Λ3
𝑣1
2                        

−
2𝑟1𝑛(1−𝑚)Λ

3+2𝑎(𝑐2+2𝑐𝑒𝑃−𝑁2+𝑒𝑁𝑃+𝑒2𝑃2)(𝑛+𝑃)2

(𝑛+𝑃)2Λ3
𝑣1𝑣2

+
2𝑟1𝑛(1−𝑚)𝑁Λ

3+2𝑎𝑒𝑁(𝑐+𝑁)(𝑛+𝑃)3

(𝑛+𝑃)3Λ3
𝑣2

2

  

  
𝑐21 = −

2𝑟2𝑒𝑃
2

(𝐾+𝑁)3
𝑣1
2 +

4𝑟2𝑒𝑃

(𝐾+𝑁)2
𝑣1𝑣2

−
2(𝑞2𝐸(𝐾+𝑁)+𝑟2𝑒)

𝐾+𝑁
𝑣2

2
.  

For any vector 𝑉 = (
𝑣1
𝑣2
), and any parameter 𝜇. 

Consequently, the following theorems studied the 

local bifurcation in system 4. 

Theorem 6: The system 4 at the PYFEP undergoes 

a transcritical bifurcation at 𝑑 = 𝑑∗, where: 

 𝑑∗ = 𝑟1 (𝑚 +
𝑛(1−𝑚)

𝑛+𝑃̃
) −

𝑎𝑃̃

𝑐+𝑒𝑃̃
.     

Proof: It is observed that for 𝑑 = 𝑑∗ the following is 

obtained 

 𝐽1 = 𝐽(𝑍3, 𝑑
∗) = (

0 0
𝑟2𝑒𝑃̃

2

𝐾2
−𝑟2

) = (𝑑𝑖𝑗). 

Therefore, 𝐽(𝑍3, 𝑑
∗) has eigenvalues given by 

𝜆31
∗ = 0, and 𝜆32

∗ = −𝑟2. Thus, PYFEP becomes a 

non-hyperbolic point. Let 𝑉1 = (
𝑣11
𝑣21

), and 𝑈1 =

(
𝑢11
𝑢21

) be the eigenvectors corresponding to the 

𝜆31
∗ = 0 of the 𝐽1 and their transpose respectively. 

Then, the direct calculation gives that:  

𝑉1 = (
1

𝑒 (
𝑟2

𝑟2𝑒+𝐾𝑞2𝐸
)
2) = (

1
𝜉
), and 𝑈1 = (

1
0
). 

Moreover, simple computation gives that:  

 𝐹𝑑(𝑍, 𝑑) = (
−𝑁
0
) ⇒ 𝐹𝑑(𝑍3, 𝑑

∗) = (
0
0
). 

Hence, it is obtained that 𝑈1
Τ𝐹𝑑(𝑍3, 𝑑

∗) = 0. 

 𝑈1
Τ[𝐷𝐹𝑑(𝑍3, 𝑑

∗)𝑉1] = −1 ≠ 0. 

𝐷2𝐹(𝑍3, 𝑑
∗)(𝑉1, 𝑉1) =                                                            

(
−
2(𝐸(𝑏+𝑞1)(𝑐+𝑒𝑃̃)

2+2𝑎𝑃̃)

(𝑐+𝑒𝑃̃)2
−

2(𝑟1𝑛(1−𝑚)(𝑐+𝑒𝑃̃)+𝑎(𝑛+𝑃̃)
2)

(𝑛+𝑃̃)2(𝑐+𝑒𝑃̃)
𝜉

−
2𝑟2𝑒𝑃̃

2

𝐾3
+

4𝑟2𝑒𝑃̃

𝐾2
𝜉 −

2(𝑞2𝐸𝐾+𝑟2𝑒)

𝐾
𝜉2

)
. 

Hence, it is obtained that: 

 

𝑈1
Τ[𝐷2𝐹(𝑍3, 𝑑

∗)(𝑉1, 𝑉1)]                       

= −
2(𝐸(𝑏+𝑞1)(𝑐+𝑒𝑃̃)

2+2𝑎𝑃̃)

(𝑐+𝑒𝑃̃)2

    −
2(𝑟1𝑛(1−𝑚)(𝑐+𝑒𝑃̃)+𝑎(𝑛+𝑃̃)

2)

(𝑛+𝑃̃)2(𝑐+𝑒𝑃̃)
𝜉 ≠ 0

. 

Thus according to the Sotomayor theorem of local 

bifurcation, see 30 system 4 undergoes a transcritical 

bifurcation at the PYFEP, which completes the 

proof.                                            ■ 

Theorem 7: The system 4 at the SEP undergoes a 

saddle-node bifurcation at 𝑏 = 𝑏∗ if and only if the 

following condition holds: 

 0 < 𝑁∗ (−𝑏∗ +
𝑎𝑃∗

Λ∗2
− 𝑞1𝐸) < 𝑃∗ (𝑞2𝐸 +

𝑟2𝑒

𝐾+𝑁∗
),   20 

 𝑐11
∗ + 𝜂2𝑐21

∗ ≠ 0,                                21 

 where, 

𝑏∗ =
1

𝑞2𝐸+
𝑟2𝑒

𝐾+𝑁∗
[−𝑞1𝑞2𝐸

2 −
𝑟1𝑟2𝑒𝑛(1−𝑚)𝑃

∗

(𝐾+𝑁∗)2(𝑛+𝑃∗)2
−

𝑟2𝑒𝑞1𝐸(𝐾+𝑁
∗)Λ∗

2
−𝑎𝑞2𝐸(𝐾+𝑁

∗)2𝑃∗+𝑟2𝑒𝑎(𝑐−𝐾)𝑃
∗

(𝐾+𝑁∗)2Λ∗2
]. 

While all other symbols are determined in the proof.  

Proof:   Recall the Jacobian matrix of system 4 at the 

SEP that is given by Eq. 13 with 𝑏 = 𝑏∗, then it can 

be written as: 

  𝐽2 = 𝐽(𝑍4, 𝑏
∗ ) = (𝑎𝑖𝑗)2×2

, 

where 𝑎𝑖𝑗 for all 𝑖, 𝑗 = 1,2 are the elements of 𝐽(𝑍4) 

at 𝑏 = 𝑏∗. The determinant of 𝐽2 can be written as:  

𝐷𝑒𝑡 = 𝑁∗𝑃∗ [𝑏∗ (𝑞2𝐸 +
𝑟2𝑒

𝐾 + 𝑁∗
) + 𝑞1𝑞2𝐸

2     

+
𝑟1𝑟2𝑒𝑛(1 − 𝑚)𝑃

∗

(𝑛 + 𝑃∗)2(𝐾 + 𝑁∗)2
+
𝑟2𝑒𝑞1𝐸(𝐾 + 𝑁

∗)Λ∗2

(𝐾 + 𝑁∗)2Λ∗2

−
𝑎𝑞2𝐸(𝐾 + 𝑁

∗)2𝑃∗

(𝐾 + 𝑁∗)2Λ∗2
+
𝑟2𝑒𝑎(𝑐 − 𝐾)𝑃

∗

(𝐾 + 𝑁∗)2Λ∗2
]

 

Hence, substituting the value of 𝑏∗ leads to 𝐷𝑒𝑡 = 0, 

then 𝐽2 has a zero eigenvalue (𝜆41
∗ = 0) with the 

second eigenvalue 𝜆42
∗ = 𝑁∗ (−𝑏∗ +

𝑎𝑃∗

Λ∗2
− 𝑞1𝐸) −

𝑃∗ (𝑞2𝐸 +
𝑟2𝑒

𝐾+𝑁∗
) < 0 under condition 17. Thus, the 

SEP is a non-hyperbolic point when 𝑏 = 𝑏∗. 

Let 𝑉2 = (
𝑣12
𝑣22

), and 𝑈2 = (
𝑢12
𝑢22

) be the eigenvectors 

corresponding to the 𝜆41
∗ = 0 of the 𝐽2 and their 

transpose respectively. Then, the direct calculation 

gives that:  

𝑉2 = (
1

−
𝑎11
𝑎12

) = (
1
𝜂1
), and 𝑈2 = (

1

−
𝑎11

𝑎21

) = (
1
𝜂2
). 

Note that, according to the Jacobian elements it is 

obtained that 𝜂1 > 0, and 𝜂2 < 0 due to condition 

20. Moreover, simple computation gives that:  

𝐹𝑏(𝑍, 𝑏) = (
−𝑁2

0
) ⇒ 𝐹𝑏(𝑍4, 𝑏

∗) = (−𝑁
∗2

0
).  

Hence, it is observed that 𝑈2
Τ𝐹𝑏(𝑍4, 𝑏

∗) = −𝑁∗2 ≠
0. Moreover, Eq. 19 gives that: 

 𝐷2𝐹(𝑍4, 𝑏
∗)(𝑉2, 𝑉2) = (

𝑐11
∗

𝑐21
∗), 
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where: 

             

𝑐11
∗ = −

2𝐸(𝑏∗+𝑞1)Λ
∗3+2𝑎𝑃∗(2𝑐+2𝑒𝑃∗+3𝑁∗)

Λ∗3
                           

−
2𝑟1𝑛(1−𝑚)Λ

∗3+2𝑎(𝑐2+2𝑐𝑒𝑃∗−𝑁∗
2
+𝑒𝑁∗𝑃∗+𝑒2𝑃∗

2
)(𝑛+𝑃∗)2

(𝑛+𝑃∗)2Λ∗3
𝜂1

+
2𝑟1𝑛(1−𝑚)𝑁

∗Λ∗
3
+2𝑎𝑒𝑁∗(𝑐+𝑁∗)(𝑛+𝑃∗)2

(𝑛+𝑃∗)3Λ∗3
𝜂1
2

 

𝑐21
∗ = −

2𝑟2𝑒𝑃
∗2

(𝐾+𝑁∗)3
+

4𝑟2𝑒𝑃
∗

(𝐾+𝑁∗)2
𝜂1      

                −
2(𝑞2𝐸(𝐾+𝑁

∗)+𝑟2𝑒)

𝐾+𝑁∗
𝜂1
2

. 

Hence, by using condition 21, it is obtained that: 

 𝑈2
Τ[𝐷2𝐹(𝑍4, 𝑏

∗)(𝑉2, 𝑉2)] = 𝑐11
∗ + 𝜂2𝑐21

∗ ≠ 0. 

Thus according to the Sotomayor theorem of local 

bifurcation, system 4 undergoes a transcritical 

bifurcation at the PYFEP, which completes the 

proof.            ■ 

In the following theorem, the occurrence of Hopf-

bifurcation, as described in 31, is investigated. 

Theorem 8: The system 4 at the SEP undergoes a 

Hopf-bifurcation at 𝑏 = 𝑏∗∗ if and only if the 

following condition holds: 

 𝑏∗∗ + 𝑞1𝐸 <
𝑎𝑃∗

Λ∗2
,                               22 

 
(−𝑏∗∗ +

𝑎𝑃∗

Λ∗2
− 𝑞1𝐸)(𝑞2𝐸 +

𝑟2𝑒

𝐾+𝑁∗
)

<
𝑟2𝑒𝑃

∗

(𝐾+𝑁∗)2
(
𝑟1𝑛(1−𝑚)

(𝑛+𝑃∗)2
+
𝑎(𝑐+𝑁∗)

Λ∗2
)

,           23 

where, 

 𝑏∗∗ =
1

𝑁∗
[
𝑎𝑁∗𝑃∗

Λ∗2
− 𝐸(𝑞1𝑁

∗ + 𝑞2𝑃
∗) −

𝑟2𝑒𝑃
∗

𝐾+𝑁∗
]. 

Proof: The characteristic equation of the Jacobian 

matrix of system 4 at the SEP that is given in Eq. 13 

can be written as: 

𝜆2 − (𝑇𝑟)𝜆 + (𝐷𝑒𝑡) = 0, 

where, 

𝑇𝑟 = 𝑁∗ (−𝑏 +
𝑎𝑃∗

Λ∗2
− 𝑞1𝐸) − 𝑃

∗ (𝑞2𝐸 +
𝑟2𝑒

𝐾+𝑁∗
).  

𝐷𝑒𝑡 = 𝑁∗𝑃∗ [− (−𝑏 +
𝑎𝑃∗

Λ∗2
− 𝑞1𝐸) (𝑞2𝐸 +

𝑟2𝑒

𝐾+𝑁∗
)

+
𝑟2𝑒𝑃

∗

(𝐾+𝑁∗)2
(
𝑟1𝑛(1−𝑚)

(𝑛+𝑃∗)2
+
𝑎(𝑐+𝑁∗)

Λ∗2
)]

. 

Consequently, the roots of the above second-order 

polynomial equation can be determined by 𝜆1,2 =
𝑇𝑟

2
±
√(𝑇𝑟)2−4(𝐷𝑒𝑡)

2
. Now, for 𝑏 = 𝑏∗∗ it is observed 

that 𝑇𝑟 = 0, and 𝐷𝑒𝑡 > 0. Hence the eigenvalues 

become 𝜆1,2(𝑏
∗∗) = ±𝑖√(𝐷𝑒𝑡), which is purely 

imaginary. Furthermore, in the neighborhood of 𝑏 =
𝑏∗∗, the eigenvalues are complex conjugates with 

real parts given by  𝑅𝑒(𝜆1,2) =
𝑇𝑟

2
. Note that, since 

𝑑

𝑑𝑏
(𝑅𝑒(𝜆1,2))

𝑏=𝑏∗∗
=

𝑑

𝑑𝑏
(
𝑇𝑟

2
)|
𝑏=𝑏∗∗

= −
𝑁∗

2
≠ 0. 

Hence, according to the Hopf-bifurcation theorem, 

the system 4 has a Hopf-bifurcation at the 𝑏 = 𝑏∗∗, 
and that complete the proof.       ■ 

 

Numerical Analysis 

In this part, a numerical simulation was performed to 

simulate the system's 4 global dynamics and to better 

understand the impact of changing parameter values 

on the system's 4 dynamical behavior. To model the 

system's dynamic, different initial values were used. 

To solve and portray the acquired results in the form 

of phase portrait figures, a numerical approach using 

MATLAB is used. To numerically solve the system, 

the following set of hypothetical parameter values is 

used, though other sets can be used as well. The 

parameter values were chosen in order to make the 

system biologically feasible. 

 
𝑟1 = 2, 𝑟2 = 1,𝑚 = 0.5, 𝑛 = 1, 𝑑 = 0.05,

 𝑏 = 0.1, 𝑎 = 0.75, 𝑐 = 2, 𝑒 = 0.2,
 𝑞1 = 0.1, 𝑞2 = 0.2, 𝐸 = 0.75, 𝐾 = 2

        24 

It is observed that for the above set of data the 

trajectories of system 4 approach asymptotically to a 

global stable SEP as represented in Fig. 1. 

 
Figure 1. The trajectories of system 4 using set 24 

approaches asymptotically to SEP that given by 

𝒁𝟒 = (𝟐. 𝟐𝟐, 𝟓. 𝟎𝟔). 
 

It is clear that all the equilibrium points exist 𝑍1 =
(0,0), 𝑍2 = (11.14,0), 𝑍3 = (0,4) and 𝑍4 =
(2.22,5.06), which are unstable point, saddle point, 

saddle point, and globally asymptotically stable 

respectively. Now, the influence of varying the 

parameter 𝑟1 in the range 𝑟1 ≤ 1.86 is shown in Fig. 

2 for a typical value of 𝑟1.  
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Figure 2. The trajectories of system 4 using set 24 

approaches asymptotically to PYFEP that given 

by 𝒁𝟑 = (𝟎, 𝟒), when 𝒓𝟏 = 𝟏. 𝟕𝟓. 

 

 Figure 2 shows that the range 𝑟1 ≤ 1.86, 

system 4 has only three equilibrium points, of which 

𝑍3 = (0,4) is globally asymptotically stable. In the 

range 𝑟1 > 1.86, however, the system approaches a 

SEP. 

 The trajectories of system 4 approach SEP for 

the range 𝑟2 ≤ 1.15, otherwise the system confronts 

extinction in prey species, and the trajectories of 

system 4 approach PYFEP for the specific values of 

𝑟2, as illustrated in Figs. 3 and 4. 

 
Figure 3. The trajectories of system 4 using set 24 

approaches asymptotically to PYFEP that given 

by 𝒁𝟑 = (𝟎, 𝟓), when 𝒓𝟐 = 𝟏. 𝟓. 

 
Figure 4. The trajectories of system 4 using set 24 

approaches asymptotically to SEP that given by 

𝒁𝟒 = (𝟓. 𝟏𝟓, 𝟑. 𝟎𝟒), when 𝒓𝟐 = 𝟎. 𝟓. 

 

The dynamic of system 4 is explored for various 

values of the parameter 𝑚, and the findings are 

shown in Fig. 5. 

 
Figure 5. The trajectories of system 4 using set 24. (a) Approach asymptotically to SEP that given by 

𝒁𝟒 = (𝟗. 𝟎𝟔, 𝟓. 𝟗𝟒), when 𝒎 = 𝟏. (b) Approach asymptotically to PYFEP that given by 𝒁𝟑 = (𝟎, 𝟒), 
when 𝒎 = 𝟎. 𝟎𝟏. 
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The trajectories of system 4 as a function of 𝑛 are 

also numerically analyzed, and the resulting 

trajectories are shown in Fig. 6 for various 𝑛 values. 

However, the trajectories of system 4 as a function of 

𝑏 are then studied numerically, and the obtained 

solutions are represented in Fig. 7 at a typical value 

of 𝑏. 

 

 
Figure 6. The trajectories of system 4 using set 24. (a) Approach asymptotically to SEP that given by 

𝒁𝟒 = (𝟔. 𝟒𝟗, 𝟓. 𝟕𝟔), when 𝒏 = 𝟏𝟎. (b) Approach asymptotically to SEP that given by 𝒁𝟒 = (𝟓. 𝟐𝟐, 𝟓. 𝟔𝟐), 
when 𝒏 = 𝟓. (c) Approach asymptotically to SEP that given by 𝒁𝟒 = (𝟏. 𝟐𝟐, 𝟒. 𝟕𝟏), when 𝒏 = 𝟎. 𝟔. (d) 

Approach asymptotically to PYFEP that given by 𝒁𝟑 = (𝟎, 𝟒), when 𝒏 = 𝟎. 𝟒. 

 

 
Figure 7. The trajectories of system 4 using set 24 

approaches asymptotically to SEP that given by 

𝒁𝟒 = (𝟎. 𝟐𝟏, 𝟒. 𝟏𝟔), when 𝒃 = 𝟎. 𝟒𝟖. 

 

The following Table 2 summarizes the acquired 

results concerning the influence of modifying 

various parameters on the dynamics of the system 4. 
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Table 2. Description of the dynamical behavior of 

the system 4 as a function of parameters 

Parameter Range Behavior 

𝑎 

𝑎
≥ 0.82 

The trajectories approach a 

PYFEP 

𝑎
< 0.82 

The trajectories approach a 

SEP 

𝑐 

𝑐 ≤ 1.7 
The trajectories approach a 

PYFEP 

𝑐 > 1.7 
The trajectories approach a 

SEP 

𝑒 

𝑒
≤ 0.17 

The trajectories approach a 

PYFEP 

𝑒
> 0.17 

The trajectories approach a 

SEP 

𝑞1 
0 < 𝑞1
< 1 

The trajectories approach a 

SEP 

𝑞2 

𝑞2
≤ 0.17 

The trajectories approach a 

PYFEP 

𝑞2
> 0.17 

The trajectories approach a 

SEP 

𝐸 

𝐸
≤ 0.75 

The trajectories approach a 

PYFEP 

𝐸
> 0.75 

The trajectories approach a 

SEP 

𝐾 

𝐾 ≤ 3 
The trajectories approach a 

SEP 

𝐾 > 3 
The trajectories approach a 

PYFEP 

 

Discussion: 
 In this paper, the effect of fear on the dynamics 

of the harvested Leslie-Gower prey-predator real-

world system is investigated. The model's dynamical 

behavior is explored from both a theoretical and 

numerical standpoint. System 4 is discovered to 

contain a maximum of four nonnegative equilibrium 

points, three of which are on the boundary axis and 

the fourth in the positive quadrant's interior. 

 The model's solution's long-term behavior is 

investigated theoretically. If conditions 12 and 14 are 

met, the TEP and PDFEP are discovered to be 

unstable points, whereas the PYFEP and, 

respectively, SEP are asymptotically stable locally. 

The requirements for systems that are uniformly 

persistent have been established. The Lyapunov 

technique is used to determine the basin of attraction 

for each asymptotically stable equilibrium point. 

Local bifurcation around equilibrium points is also 

studied using Sotomayor's theorem. 

 The system's global dynamical behavior, 

including the influence of fear, is investigated via 

numerical simulation based on a set of hypothetical 

parameters. The following are the outcomes. Starting 

from various sets of initial points, the trajectories for 

set 24 of data approach SEP asymptotically. This 

confirms the theoretical conclusion about the 

equilibria's stability. Reducing the prey species' birth 

rate below a threshold value removes the SEP, and 

the system suffers extinction in prey species. Starting 

from varied initial values, the trajectories approach 

asymptotically to PYFEP. 

 However, increasing the predator species' 

birth rate above a certain threshold removes the SEP, 

the system suffers extinction in prey species, and the 

trajectories approach PYFEP asymptotically starting 

from various initial values. Now, since  

lim
𝑚→0

[𝑚 +
𝑛(1−𝑚)

𝑛+𝑃
] =

𝑛

𝑛+𝑃
< 1, while lim

𝑚→1
[𝑚 +

𝑛(1−𝑚)

𝑛+𝑃
] = 1. 

 As a result, lowering the value of the minimum 

cost of fear lowers the birth rate of prey, which leads 

to prey extinction, and the solutions approach the 

PYFEP asymptotically. However, increasing the 

value of the minimum cost of fear maintains the 

system's persistence, and the solutions continue to 

approach a SEP asymptotically. On the other hand, 

given the fact that lim
𝑛→0

[𝑚 +
𝑛(1−𝑚)

𝑛+𝑃
] =𝑚 ≤ 1, while 

lim
𝑛→∞

[𝑚 +
𝑛(1−𝑚)

𝑛+𝑃
] = 1. 

 As the value of the level of the fear decreases, 

the SEP eventually approaches PYFEP, and they 

coincide, resulting in prey extinction and solutions 

approaching PYFEP asymptotically. Increasing the 

value of the amount of fear, on the other hand, keeps 

the system alive and the solutions close to SEP. 

Furthermore, even though increasing the decay rate 

due to intraspecific competition in prey species 

gradually lowers the value of the prey population, the 

system persists and the solutions approach SEP 

asymptotically. 

 It has been shown that increasing the 

predator's attack rate or carrying capacity above a 

threshold value has a similar effect to that explained 

by increasing the predator population's birth rate, and 

the system then loses its persistence. Reducing the 

half-saturation constant, conversion rate, predator 

catchability coefficients, or harvesting effort, on the 

other hand, has a similar effect as lowering the prey 

population's birth rate, and the system eventually 

loses its persistence. As a result, increasing prey and 

predator catchability coefficients, as well as 

harvesting effort, keep the system persists.  

 

Conclusion: 
 The SEP is eliminated when the birth rate of 

the prey species falls below a certain level, and the 

system experiences prey species extinction. 

However, if the birth rate of the predator species rises 

over a specific point, the SEP is lost, the system 

experiences prey species extinction, and the 

trajectory approaches PYFEP asymptotically starting 

from a variety of initial values. The birth rate of prey 

decreases with decreasing minimal cost of fear, 
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which causes prey to become extinct. As a result, 

solutions approach the PYFEP asymptotically. The 

system persists, nevertheless, as the solutions 

continue to asymptotically approach a SEP when the 

minimum cost of fear is increased. The SEP 

gradually approaches PYFEP and coincides with it, 

leading to prey extinction and solutions that 

approach PYFEP asymptotically as the value of the 

intensity of fear declines. On the other side, 

maintaining the system and keeping the solutions 

close to SEP requires increasing the value of the level 

of fear. The system continues to function by 

increasing the catchability coefficients of the 

predators and prey as well as the harvesting effort. 

 

Data Availability  
The data used to support the findings of this study are 

included in the article.  
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 كور المحور تحت تأثير الحصاد-نمذجة وتحليل تأثير الخوف على نموذج لزلي

 
 رائد كامل ناجي                   عبد الرحمن محمود جميل

 
 قسم الرياضيات، كلية العلوم، جامعة بغداد، العراق

 
 :الخلاصة

تم اقتراح ودراسة نموذج لزلي كور المحور للفريسة والمفترس والمتضمن دالة الاستجابة الوظيفية لبدنكتـن ديانجلـز. الغــرض مـــــن 

الدراسة هو اختبار تأثيرات كل من الخوف والحصاد الثنائي ذو الجهد الثابت على السلوك الديناميكي للنظام. الخواص النوعية للنموذج 

أن النظام لوحظ  وقدــة الاستقرارية المحليـــة لنقاط التوازن ,الاصرار, الاستقرارية الشاملة اختبرت. تم دراسة تحليل التشعب المحلي. والمتضمنـ

لمتطلبات اعقدة السرج عند نقطة توازن البقاء بينما يحدث التشعب الحرج عند نقطة التوازن الحدودي. بالإضافة إلى ذلك ، تم تحديد التشعب  ظهري

واخــيرا باستخدام برنامج الماثلاب تم تنفيذ المحاكات العددية للنظام للتحقق من صلاحية النتائج النظرية وتصور  .الأساسية لوجود تشعب هوبف

 ديناميكيات النظام.
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