Synthesis, Characterisation and Biological Activity of New Co, Ni, Zn and Cd Polymeric Complexes Derived from Dithiocarbamate Ligand

Riyadh M. Ahmed *, Sarah S. Abdul Rahman 1, Dhefah H. Badri 1, Khawla M. Sultan 1, Ghada M. Kamil 2, Ismaeel Y. Majeed 1

1Department of Chemistry, College of Education for Pure Science (Ibn Al-Haitham), University of Baghdad, Baghdad, Iraq.
2Branch of Applied Chemistry, Department of Applied Science, University of Technology, Baghdad, Iraq.

*Corresponding Author.

Received 01/11/2022, Revised 10/02/2023, Accepted 12/02/2023, Published Online First 20/07/2023

Abstract

Synthesis of a new class of Schiff-base ligand with a tetrazole moiety to form polymeric metal complexes with CoII, NiII, ZnII, and CdII ions has been demonstrated. The ligand was synthesised by a multi-steps by treating 5-amino-2-chlorobenzonitrile and cyclohexane-1,3-dione, the 5,5’-(((1E,3E)-cyclohexane-1,3-diylidene)bis(azanylylidene))bis(2-chlorobenzonitrile) was obtained. The precursor (M) was prepared from the reaction 5,5’-(((1E,3E)-cyclohexane-1,3-diylidene)bis(azanylylidene))bis(2-chlorobenzonitrile) with NaN3 to obtained (1E,3E)-N1,N3-bis(4-chloro-3-(1H-tetrazol-5-yl)phenyl)cyclohexane-1,3-diimine (N). By reacting the precursor (M) with CS2/KOH, the required ligand was synthesised. Co (II), Ni (II), Zn (II), Cd (II) ions produce polymeric metal complexes with the formula [M(L)]n when they react with the ligand (L). These complexes were synthesised using the same methods. The geometrical structure of ligand and their polymeric complexes were determined using FTIR, 1H, 13C-NMR, electronic spectroscopy, ESMS, magnetic susceptibility, metal and chloride contents, micro elemental analysis and conductance. From the results, we conclude that the L-complexes demonstrate the production of four-coordinate complexes with tetrahedral geometry for Co(II), Zn(II), and Cd(II), and square planer geometry for Ni (II). We examined the antibacterial activity of both ligand and complexes with two types of bacteria positive (Bacillus stubbili and Staphylococcus aureus) and negative (Escherichia coli and Pseudomonas aeruginosa) with concentration 10^{-2}.

Keywords: Biological, Ligand, Polymeric, Spectroscopy, Tetrazole.

Introduction

Dithiocarbamates (DTCs) are a class of tiny chemical compounds that chelate metal ions extremely well1. There has been an abundance of studies and reviews on transition and non-transition metals, indicating that these compounds come in a wide variety of forms2. Dithiocarbamate's ligands are more sophisticated organic sulphur compounds. This may be because the CSS group has a low bite angle and is capable of reacting with the majority of metals in the periodic table. By adding a single pair of electrons, sulphur atoms can form complexes with metal atoms3,4. Stabilization of DTCs is possible in a wide variety of metal oxidation states, coordination geometries, and compounds. It encompasses a wide range of structural changes, from monomeric to polymeric molecular...
assemblies. Dithiocarbamates' structural structure is defined by their binding capabilities; their physical and chemical properties are described by their monodentate, bidentate chelating, and bidentate bridging variations. Dithiocarbamate and dithiophosphinate complexes have a wide range of applications. Dithiocarbamates are significant materials that have been extensively studied in coordination chemistry, medicine, and radiopharmaceutical chemistry, as well as sensing engineering and materials science, for their peculiarly explanatory, biological, and physico-chemical properties, articulated biological activities, and utility as models of metallo-enzyme dynamic sites. DTCs have been shown to have significant biological activity, including antimicrobial activity. When metal coordination is present, sulphur and nitrogen atoms play a critical role in defining the dynamic destinies of various metallobimolecules. Thio macrocyclic applications have been proposed. The subject of coordination chemistry is Schiff bases and their metal complexes. Dithiocarbamates are a class of compounds that are widely employed because they exhibit a strong and selective affinity for a wide range of metal ions. As a result, over the last decade, self-assembly mediated by metal dithiocarbamate coordination has established itself as a feasible supramolecular approach for the construction of macrocycles, cages, catenanes, and nanoparticles. The bulk of applications are based on dithiocarbamate ligands' metal ion complexation capabilities, which have been demonstrated experimentally with transition metal ions.

Two sulphur donor atoms present in dithiocarbamate ligands efficiently form chelating compounds with all metal ions. Due to the strength of their O-bond, dithiocarbamate molecules are capable of stabilising metal ions with a high oxidation state in metal complexes. While the sulphur atoms in dithiocarbamate ligands exhibit similar O-donor and N-back donation features, those ligands exhibit an unusual property in which an additional n-electron flows from nitrogen to sulphur via a planar delocalized orbital system. The dithiocarbamate ligand can be coordinated to metals in three ways: bidentate, ansiobidnate, or monodenate. Numerous metallic elements are essential for the biological system to function properly. Without the appropriate metal ion, a biological reaction catalysed by a particular metallo-enzyme would continue at a snail's pace. We want to prepared new dithiocarbamate ligand, and react it with some metal complexes to prepare the polymeric complexes. Also, we want to characterisation the ligand and its metal complexes by spectral techniques and test the biological activity.

Materials and Methods

Aldrich reagents were used exactly as they were received. Prior to use in the preparation, solvents were dried according to normal procedures. All three tests CHNS were carried out on a Heraeus (Vario-EL) instrument. The spectra of I.R. discs used as KBr discs were measured between 4000 and 400 cm⁻¹ using a Shimadzu-8400S F.T.I.R. spectrophotometer. At a temperature of 25°C, the ultraviolet spectra of 0.001 M solutions of complexes in (CH₃)₂SO were investigated using Shimadzu ultra-violet (1800) spectroscopy. ¹H and ¹³C-NMR spectroscopy, the spectra were collected using a Jeol 300-MHz spectrometer in a DMSO–d₆ solution, with tetra-methylsilan (TMS) serving as an internal standard for ¹H-NMR. (ES) mass spectrometry was used to achieve the spectra of ligand and complexes. Stuart's melting point electro-thermal uncorrected melting points were generated using SMP/40 capillary melting point equipment. A Shimadzu was used to determine the metals. 680-G.- (A.A..) 680-G. Chloride content in complexes were determined using the potentiometric titration method with a 686-Titrip processor and 665Dosimat-Metrohim Swiss. A PW 9526 differential conductivity metre was used to determine the conductivity of DMSO solutions, and a magnetic susceptibility balance was utilised to measure the magnetic moments at ambient temperature.
Synthesis of Precursor (N)
The ligand was isolated adopting a reported procedure in24, as follows:

Cyclohexane-1,3-dione (0.5 g, 4.46 mmol) was added dropwise while stirring to a solution consisting of 1,4-Diazabicyclo[2.2.2]octan (DABCO) (0.66 g, 3.0 mmol), 5-amino-2-chlorobenzonitrile (1.35 g, 8.92 mmol), and a 6 ml. solution of TiCl\textsubscript{4} (0.089 ml., 0.77 mmol.) (15 mL) (which works to pull a proton from amine to release the neoclophilicity of amine). Three drops of CH\textsubscript{3}COOH were added to the reaction mixture, and then solution was refluxed for 8 hours. Filtration and slow evaporation of the reaction mixture. The reaction mixture was heated at reflux for 2 hours. Filtration and slow evaporation of the reaction mixture. The solid product was was prepared by using a conventional approach for the synthesis of dithiocarbamate compounds15 and as follows:

A solution of precursor 5,5'-(((1E,3E)-cyclohexane-1,3-diylidene)bis(azanylylidene))bis(2-chlorobenzonitrile) obtained as a yellow powder. m.p. = 187°C; yield: 0.92 g (59%). FTIR data for the obtained compounds: 2163 ν(CN), 1627 ν(C=N), and 1229 ν(C=N)triazole, ν(N=N), and ν(N=O).

Synthesis of Complexes
A solution of L (1 mmol) in ethanol (20 mL) was stirred for 3 minutes, and then followed by a dropwise addition of metal chloride a solution of metal chloride (1 mmol) in (10mL) which (MCl\textsubscript{2} = CoCl\textsubscript{2}.6H\textsubscript{2}O, NiCl\textsubscript{2}.6H\textsubscript{2}O, ZnCl\textsubscript{2} and CdCl\textsubscript{2}.2H\textsubscript{2}O). The reaction mixture was heated at reflux for 2 hours under N\textsubscript{2} atmosphere, and a solid was formed. The solid product was washed with hot ethanol and dried at room temperature, which achieved CoII, NiII, ZnII, and CdII as solid polymeric complexes. After that, the solid product was washed in hot ethanol, and dried under vacuum. As shown in Scheme 2, this method produced non-electrolyte complexes with the broad formulas [M(L)] n (where M = CoII, NiII, ZnII, and CdII).

Results and Discussion

Synthesis
The recently found tetrazole Schiff base ligand L was synthesised in large quantities by reacting cyclohexane-1, 3-dione with 5-amino-2-chlorobenzonitrile Scheme 1. The ligands were synthesised in three phases, with methanol serving as the reaction medium. On the other hand, precursor (N) is a neutral precursor. The ligand (L) is a type of electrolyte that can accommodate a single metal ion. The ligand was characterised using
C.H.N.S. Many physical properties are listed in and Table 1, FT-IR Table 2, UV–Vis. Table 3, and 1H and 13C NMR spectra.

![Scheme 1. Synthetic route of the ligand](image)

Table 1. The Colours, yields, elemental analyses, and molar conductance in DMSO values for compounds

<table>
<thead>
<tr>
<th>Compound</th>
<th>Colour</th>
<th>Yield (%)</th>
<th>m.p °C</th>
<th>Found %, (Calcd. %)</th>
<th>As (cm2 Ω$^{-1}$ mol$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>precursor (N)</td>
<td>Pale Yellow</td>
<td>245</td>
<td>-</td>
<td>M C H N S Cl</td>
<td>-</td>
</tr>
<tr>
<td>L</td>
<td>Yellow</td>
<td>237</td>
<td>-</td>
<td>37.67 (37.98) 2.01 (2.03) 19.89 (20.13) 17.92 (18.43) 9.82 (10.19)</td>
<td></td>
</tr>
<tr>
<td>[CoIIL]$_n$</td>
<td>Blue</td>
<td>66</td>
<td>294*</td>
<td>8.84 (8.71) 38.74 (39.06) 2.02 (2.09) 20.62 (20.71) 18.73 (18.96) 10.27 (10.48) 12.67</td>
<td></td>
</tr>
<tr>
<td>[NiIIL]$_n$</td>
<td>Green</td>
<td>69</td>
<td>273*</td>
<td>8.46 (8.68) 38.71 (39.07) 2.05 (2.09) 20.59 (20.71) 18.75 (18.96) 10.26 (10.48) 6.78</td>
<td></td>
</tr>
</tbody>
</table>
After heating, the complex formation was solid compounds, inert to air and soluble in DMF and DMSO, but not soluble in other solvents. Insolubility may refer to the polymeric character. Additionally, because of L essential structural influence, polymeric complex chain assemblies can be formed. As a result, the sulphur atom in the dithiocarbamate segment is required for the vacant position on the unsaturated metal centre to be filled, resulting in ladder-like structures. The complexes' anticipated geometries were obtained by analysing their spectra and other analytical data. The analytical results corroborated the formulas provided Table 1, FT-IR peaks Table 2, UV-Vis spectra are presented Table 3.

FT-IR and NMR Spectra

The FT-IR of precursor (N) and free ligand revealed strong peaks for the functional groups v(N-H), ν(C=N), ν(C=N)tetrazole, δ(N-H), (N=N), and v(N=N) and (N-N) tetrazole. Bands at 3226 and 1643 cm\(^{-1}\) were discovered as a result of v(N-H) and v(C=N) in (N)\(^{28,29}\). At 1574 cm\(^{-1}\), L may exhibit bands associated with the tetrazole ring ν(C=N)\(^{30,31}\). In L Fig. 1, the tetrazole rings v(N=N) and v(N-N) produced bands at 1123 and 1078 cm\(^{-1}\), respectively. The FT-IR spectrum exhibited strong peaks ν(C=N)tetrazole, and functional groups (N=N), (N-N), and (CS\(_2\)). The disappearance of the (N-H) band is thought to be related to the creation of the CS\(_2\) ligand. Due to (C≡N) in L, bands were identified about 1653 cm\(^{-1}\)\(^{30,31}\). At 1575cm\(^{-1}\) in L, bands associated with the tetrazole ring's ν(C≡N) may be seen. The bands at 1114 and 1031 cm\(^{-1}\) are due to the tetrazole ring's v(N=N) and (N-N) configurations in L\(^{32}\).
After complexation, the polymeric compounds' FT-IR spectra exhibited L bands with the necessary shifts and M-S peaks associated with complexation Table 2. Around the moment of complexation, the ν(C=N) of the imine groups is altered and identified. In L complexes, The bands at 1654-1666 cm⁻¹ do not coordinate the metal atoms. These bands have been shifted to a higher frequency in compared to the free ligands. The bands at 1552-1566 cm⁻¹, which corresponds to the tetrazole ring's ν(C=N) in L. Complexes have bands in their FT-IR spectra 1149-1178, 1091-1114, and 1006-1078 cm⁻¹ which can be assigned to ν(C-N), (N=N), and (N-N) 32. The FT-IR spectra of complexes exhibited bands between 357-381 cm⁻¹ which may be attributed to ν(M-S). These bands show that the metal ion and the dithiocarbamate group are coordinated. The dithiocarbamate CS₂ groups, band at 1114-1078 cm⁻¹ and 946-991 cm⁻¹ are assigned to νas(CS₂) and νs(CS₂), respectively. This is characteristic of an anisobidentate chelation mode of the ligand to the metal atoms, Fig. 2-5 in L complexes, all bands are summarised in Table 2.
Figure 3. IR spectrum of Ni complex

Figure 4. IR spectrum of Zn complex

Figure 5. IR spectrum of Cd complex
Table 2. FTIR frequencies (cm\(^{-1}\)) of the compounds.

<table>
<thead>
<tr>
<th>Compound</th>
<th>v(C(=)N)</th>
<th>v(C(=)C)</th>
<th>v(C(=)N)</th>
<th>v(N(-)CS(_2))</th>
<th>v(C-N)</th>
<th>Nas, s</th>
<th>v(N(=)N)</th>
<th>v(N-N)</th>
<th>v(M-S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N tetrazole</td>
<td>1632</td>
<td>1602, 1493</td>
<td>1568</td>
<td>1185</td>
<td>1107</td>
<td>1078</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCS(_2)</td>
<td>1653</td>
<td>1624</td>
<td>1575</td>
<td>1386</td>
<td>1190</td>
<td>1114, 986</td>
<td>1114</td>
<td>1031</td>
<td>-</td>
</tr>
<tr>
<td>Co(II)(_n)</td>
<td>1666</td>
<td>1581, 1485</td>
<td>1552</td>
<td>1398</td>
<td>1178</td>
<td>1091, 985</td>
<td>1091</td>
<td>1074</td>
<td>366, 381</td>
</tr>
<tr>
<td>Ni(II)(_n)</td>
<td>1656</td>
<td>1585, 1483</td>
<td>1566</td>
<td>1386</td>
<td>1149</td>
<td>1112, 991</td>
<td>1112</td>
<td>1070</td>
<td>357, 376</td>
</tr>
<tr>
<td>Zn(II)(_n)</td>
<td>1665</td>
<td>1600, 1483</td>
<td>1577</td>
<td>1429</td>
<td>1157</td>
<td>1078, 946</td>
<td>1114</td>
<td>1078</td>
<td>371</td>
</tr>
<tr>
<td>[Cd(II)](L’(_n)</td>
<td>1654</td>
<td>1608, 1467</td>
<td>1560</td>
<td>1404</td>
<td>1176</td>
<td>1112, 983</td>
<td>1112</td>
<td>1006</td>
<td>367</td>
</tr>
</tbody>
</table>

The ligand’s \(^1\)H and \(^{13}\)C-NMR spectra indicated signals corresponding to the both proton, and carbon, nuclei (see experimental section). \(^1\)H-NMR spectrum of L Fig. 6, contained a peak between 1.83 and 2.05 ppm, corresponding to two methylen group protons (C\(_3\)-H, m, CH\(_2\), 2H). Between 2.94 and 3.08 ppm, a signal is assigned to (C\(_3,5\)-H, CH\(_2\), 4H, t), whereas the chemical shift between 3.61 and 3.61 ppm is attributed to (C\(_1\)-H, CH\(_2\), s, 2H). The chemical shift of 7.28 ppm indicates that two protons have been assigned to the (C\(_8\)-H, d, CH\(_{aro}\), 2H). The chemical shift of 7.52 ppm indicates that two protons have been assigned to the (C\(_9\)-H, d, CH\(_{aro}\), 2H), whereas the signal at 7.86 ppm indicates that two protons have been assigned to the (C\(_9\)-H, d, CH\(_{aro}\), 2H). Due to its connection to the chloro atom, this peak was moved downfield in compared to the (C\(_8\)-H) peak (electron withdrawing group). By eliminating the N-H group, the dithiocarbamate group is generated. \(^{13}\)C NMR showed chemical shifts at 19.991 (C\(_4\)) and 31.121 (C\(_4\)) Fig. 7. (C\(_3,5\)). at 119.706 and 126.562, the chemical shift may be assigned to (C\(_8\), 12). The resonances at 137.457 and 137.486 ppm, can be attributed to (C\(_9,10\)). The chemical shift at 144.332, may be attributed to (C\(_{11}\)). The resonance at 162.868pm may be assigned to (C\(_{13}\)). While it is possible to ascribe the chemical signal at 169.988ppm to (C\(_{2,6}\)). The signal with a strong chemical shift at 188.749ppm could be assigned to CS\(_2\) group.
Mass Spectra of Ligand and Complexes

The E.S.M.S. analysis of L Fig. 8, showed peaks associated with the molecule's sequential fragmentation. The ligand's molecular ion peak was determined to be m/z 696.51 (19 percent) (M+1)*. The spectra suggested the presence of additional peaks at m/z 657.53 (7%), 617.82 (17%), 542.24(25%), 466.15(22%), 398.37(18%), 330.32(100%), and 236.19(26%) that assigned to the [M-K]+, [M-2K]+, [M-(2K)+CS2]+, [M-(2K)+2CS2]+, [M-(2K)+(N3+CN)]+, [M-(2K)+CS2+(N3+CN)]+, [M-(2K)+(CS2)+(N3+CN)]+, and [M-(2K)+(CS2)+(N3+CN)]+(C6H4F)2+.
The ESMS of Co, Fig. 9, showed peaks that corresponded to the molecule's fragmentation. At m/z 677.11 (8 percent) (M)+, the ligand's molecular ion peak was found. There were other peaks in the spectrum at m/z 601.38 (10%), 525.24 (13%), 457.37 (20%), 389.42 (22%), 295.56 (100%), 201.63 (24%), that assigned to the [M - (CS₂)]⁺, [M - (CS₂)₂]⁺, [M - (CS₂) + (N₃ + CN)]⁺, [M - (CS₂) + (N₃ + CN)₂]⁺, [M - (CS₂) + (N₃ + CN)₃]⁺, [M - (CS₂) + (N₃ + CN)₄]⁺, [M - (CS₂) + (N₃ + CN)₅]⁺, [M - (CS₂) + (N₃ + CN)₆]⁺, [M - (CS₂) + (N₃ + CN)₇]⁺.

The ESMS of Ni, Fig. 10, exhibited peaks that corresponded to the molecule's successive fragmentations. The ligand's molecular ion peak was discovered at m/z 676.03 (19 percent) (M)+. Other peaks in the spectrum could be found at m/z 600.12 (22%), 524.46 (18%), 457.39 (36%), 388.43 (40%), 294.59 (100%), 200.64 (29%), that assigned to the [M - (CS₂)]⁺, [M - (CS₂)₂]⁺, [M - (CS₂) + (N₃ + CN)]⁺, [M - (CS₂) + (N₃ + CN)₂]⁺, [M - (CS₂) + (N₃ + CN)₃]⁺, [M - (CS₂) + (N₃ + CN)₄]⁺, [M - (CS₂) + (N₃ + CN)₅]⁺, [M - (CS₂) + (N₃ + CN)₆]⁺, [M - (CS₂) + (N₃ + CN)₇]⁺, [M - (CS₂) + (N₃ + CN)₈]⁺.
The ESMS of Zn, Fig. 11, showed peaks that correlated to the molecule's fragmentation. At m/z 682.18 (12 percent) (M-1)*, the ligand's molecular ion peak was found. There were other peaks in the spectrum at m/z 606.32 (9%), 530.48 (13%), 462.57 (5%), 394.63 (11%), 300.74 (100%), 206.62 (19%), that assigned to the [M- (CS₂)]*, [M- (CS₂)₂]*, [M- (CS₂)+(N₃+CN)]*, [M- (CS₂)+(N₃+CN)₂]*, [M- (CS₂)+(N₃+CN)₂+(C₆H₄Cl)]*, [M- (CS₂)+(N₃+CN)₂+(C₆H₄Cl)₂]*.

The ESMS of Cd, Fig.12, revealed peaks that matched to the fragmentation of the molecule. The ligand’s molecular ion peak was found at m/z 731.03 (12 percent) (M+1)*. Other peaks in the spectrum could be found at m/z 655.35 (16%), 579.54 (20%), 511.59 (26%), 443.76 (23%), 349.82 (100%), 255.74 (24%), that assigned to the [M- (CS₂)]*, [M- (CS₂)₂]*, [M- (CS₂)+(N₃+CN)]*, [M- (CS₂)+(N₃+CN)₂]*, [M- (CS₂)+(N₃+CN)₂+(C₆H₄Cl)]*, [M- (CS₂)+(N₃+CN)₂+(C₆H₄Cl)₂]*.
Electronic Spectra, Magnetic Moments and Conductivity Measurements

L's electronic spectrum, Fig. 13, revealed a peak at 289 nm attributable to $\pi \rightarrow \pi^*$. The electronic spectra of the L polymeric complexes demonstrated a hypsochromic shift of the bands associated with the intra-ligand $\pi \rightarrow \pi^*$ transition and charge transfer (C.T) peak. The tetrahedral structure is consistent with the spectrum of the Co(II) complex$^{33, 34}$, Fig. 14. The μ_{eff} value of magnetic moment indicates a tetrahedral structure with a high spin number. Due to the diamagnetic nature of the Ni(II) complex, a square planar form surrounding the Ni atom has been proposed35, Fig. 15. When compared to the projected values, the polymeric compounds demonstrated low magnetic moment values at room temperature. This could be a result of metal-metal interactions mediated by dithiocarbamate. Additionally, the assembly of polymeric structures may result in considerable electron delocalization between structures36. In the spectra of Zn(II) and Cd(II) complexes, bands associated with intraligand $n \rightarrow \pi^*$ and $\pi \rightarrow \pi^*$ have been found37 Figs. 16 and 17. The diamagnetic compounds, as expected, have a d10 system, implying a tetrahedral structure. L complexes are non-electrolytes based on their molar conductivities38, see Table 3.

<table>
<thead>
<tr>
<th>Compound</th>
<th>μ_{eff} (BM)</th>
<th>λnm</th>
<th>Wave number (cm$^{-1}$)</th>
<th>ε_{max} (dm3 mol$^{-1}$ cm$^{-1}$)</th>
<th>Assignments</th>
<th>Suggested structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>-</td>
<td>289</td>
<td>34602</td>
<td>2119 $\pi \rightarrow \pi^*$</td>
<td>C.T</td>
<td>tetrahedral</td>
</tr>
<tr>
<td></td>
<td></td>
<td>365</td>
<td>27397</td>
<td>532 $n \rightarrow \pi^*$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Co(II)(L)]$_n$</td>
<td>3.11</td>
<td>278</td>
<td>35971</td>
<td>2014 Intra-ligand tetrahedral</td>
<td>C.T</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>323</td>
<td>30959</td>
<td>2156 C.T</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>425</td>
<td>23529</td>
<td>365 C.T</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>663</td>
<td>15082</td>
<td>74 $4A_2^{(F)} \rightarrow 4T_1^{(P)}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Ni(II)(L)]$_n$</td>
<td>Diamagnetic</td>
<td>277</td>
<td>36101</td>
<td>1385 Intra-ligand square planar</td>
<td>C.T</td>
<td>square planar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>326</td>
<td>30674</td>
<td>394 C.T</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>657</td>
<td>15220</td>
<td>47 $1A_1g^{(P)} \rightarrow 1A_2g^{(F)}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Zn(II)(L)]$_n$</td>
<td>Diamagnetic</td>
<td>275</td>
<td>36363</td>
<td>1360 Intra-ligand tetrahedral</td>
<td>C.T</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>301</td>
<td>33222</td>
<td>1437 C.T</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>384</td>
<td>26041</td>
<td>832 C.T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Cd(II)(L)]$_n$</td>
<td>Diamagnetic</td>
<td>285</td>
<td>35087</td>
<td>1278 Intra-ligand tetrahedral</td>
<td>C.T</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>381</td>
<td>26246</td>
<td>589 C.T</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 13. UV-Vis spectrum of L

Figure 14. UV-Vis spectrum of Co complex

Figure 15. UV-Vis spectrum of Ni complex

Figure 16. UV-Vis spectrum of Zn complex

Figure 17. UV-Vis for Cd complex

Biological Activity

The bacterial activity of the synthesised ligands and their complexes was investigated using gram-positive (Bacillus subtilis and Staphylococcus aureus) and gram-negative (Escherichia coli and Pseudomonas aeruginosa) with concentration 10^{-2}. Individual tests using DMSO alone found no activity against any bacterial species. The effect of the preparation compounds on bacterial species is described in Table 4, which displays the size of inhibition zones measured against the development of various bacterial strains by mm. According to the findings, the ligands had no antibacterial activity against Escherichia coli and Escherichia coli.

As a result, the formation of complexes boosts antibacterial activity when compared to free ligands. The chelation idea may be able to explain why complex activity has risen so much. Chelation decreases the polarity of the metal, allowing it to share some of its positive charge with the donor group and allowing for π-electron delocalization across the ring. The cadmium complex is approximately twice as effective against bacteria. This may be explained by the Cd atom's toxicity, as well as its molecular weight and electronic configuration (d^{10} system) in comparison to other metal ions.39,40
Table 4. The bacterial activity of compounds

<table>
<thead>
<tr>
<th>Compounds</th>
<th>Gram-negative (G+)</th>
<th>Gram-negative (G-)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bacillus stambilli</td>
<td>Staphyloccocus aureus</td>
</tr>
<tr>
<td>L</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>[CoII(L)]n</td>
<td>13</td>
<td>6</td>
</tr>
<tr>
<td>[NiII(L)]n</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>[ZnII(L)]n</td>
<td>18</td>
<td>21</td>
</tr>
<tr>
<td>[CdII(L)]n</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

Conclusion

The synthesis coordination chemistry of novel tetrazole Schiff-base ligands capable of polymerizing with CoII, NiII, ZnII and CdII ions. Polymeric complexes were formed when the tetrazole ligand was combined with metal chloride. Many measurements are used to the ligand and its complexes. These techniques indicated the development of polymeric complexes with tetrahedral geometries surrounding metal centers for CoII, ZnII and CdII, and square planar surrounding metal centers for NiII complexes. The low magnetic values and solubility of these chemicals indicate their polymeric nature. Also, the effects of L and its complexes on gram-positive and gram-negative bacteria were tested.

Acknowledgment

The authors state their truthful appreciations to Department of Chemistry, College of Education for (Pure Sciences in Ibn-Al Haitham), University in Baghdad- Iraq for the financial support of this study.

Authors’ Declaration

- Conflicts of Interest: None.
- We hereby confirm that all the Figures and Tables in the manuscript are ours. Furthermore, any Figures and images, that are not ours, have been included with the necessary permission for re-publication, which is attached to the manuscript.
- Ethical Clearance: The project was approved by the local ethical committee in University of Baghdad.

Authors’ Contribution Statement

All the authors participated in performing different roles as follows: Conception, design, acquisition of data, analysis, interpretation, drafting the MS, revision and proofreading.
References

40. Ran VS, Rakhi. D, Suresh CJ. Synthetic, magnetic, spectral, antimicrobial and antifertility studies of dioxygenolbenzenum (VI) unsymmetrical imine complexes having a N[1] N donor system. Trans Met
التحضير والتشخيص والنشاط البيولوجي لمعدات بوليمرية جديدة

Dithiocarbamate المشتقة من ليكاند

رياض م. احمد 1، سارة س. عبد الرحمن 1، ضفاف ح. بدري 1، خوله م. سلطان 1، غادة م. كامل 2، اسماعيل ي. مجيد 1.

قسم الكيمياء، كلية التربية للعلوم الصرفة (بان الهيثم)، جامعة بغداد، بغداد، العراق 1

الكيمياء التطبيقية، قسم العلوم التطبيقية، الجفر العراق 2

الخلاص

تم تحضير فئة جديدة من ليكاند قاعدة شف حاوية على تترازول على تكوين معدات فلزية بوليمرية مع أيونات Co II و Ni II و Zn II و Cd II من فئة تترازول. تم تحضير الليكاند بعدة خطوات عن طريق هضم كلو هكسان - 1، 3- ديون (1E,3E)-cyclohexane-1,3-diylidene)bis(azanylylidene))bis(2-chlorobenzonitrile) للحصول على (1E,3E)-cyclohexane-1,3-diylidene)bis(azanylylidene))bis(2-chlorobenzonitrile) لنفس الزيت

لتحضير المادة الأولية (M) من تفاعل entre (1E,3E)-cyclohexane-1,3-diylidene)bis(azanylylidene))bis(2-chlorobenzonitrile) مع 3 NaN3 للحصول على: (5-5'-((1E,3E)-cyclohexane-1,3-diylidene)bis(azanylylidene))bis(2-chlorobenzonitrile) من خلطة تفاعل المشتق (M) مع / KOH 2 CS2. تم تحضير الليكاند (L) من خلال تفاعل المشتق (M) مع NaN3 في كلو هكسان - 1، 3- ديون. تم تحضير هذه المعدات واستخدمت نفس الزيت

لتحديد الشكل الهندسي للمعدات بالأشعة الكهرومغناطيسية، ومحتوى الفلزات. تم تحضير هذه المعدات واستخدمت نفس الزيت

لحذف النشاط المضاد للبكتيريا لكل من ليكاند ومعداته ضد نوعين من البكتيريا الموجبة (Bacillus stubtili and Staphylococcus aureus) والسلبية (Escherichia coli and Pseudomonas aeruginosa) من النتائج تبين أن الليكاند L ينتج معدات فلزية بوليمرية ذات الصيغة (Cd II و Zn II و Ni II و Co II) المشتقة من تترازول. قمنا بفحص النشاط المضاد للمعدات من الكالسيوم في كل من ليكاند ومعداته ضد نوعين من البكتيريا الموجبة (Bacillus stubtili and Staphylococcus aureus) والسلبية (Escherichia coli and Pseudomonas aeruginosa) مع تترازول.

الكلمات المفتاحية: بايولوجي، ليكاند، بوليمرية، التحليل الطيفي، تترازول.