This is a preview and has not been published.

Some Subclasses of Univalent and Bi-Univalent Functions Related to K-Fibonacci Numbers and Modified Sigmoid Function

Authors

  • Amal Madhi Rashid Department of Mathematics, College of Education for Pure Sciences, University of Anbar, Ramadi, Iraq. https://orcid.org/0000-0002-7061-1857
  • Abdul Rahman S. Juma Department of Mathematics, College of Education for Pure Sciences, University of Anbar, Ramadi, Iraq.

DOI:

https://doi.org/10.21123/bsj.2022.6888

Keywords:

Bi-univalent function, Borel distribution, Fibonacci numbers, Modified sigmoid function, Univalent function

Abstract

            This paper is interested in certain  subclasses of univalent and bi-univalent functions concerning  to shell- like curves connected with k-Fibonacci numbers involving modified Sigmoid activation function θ(t)=2/(1+e^(-t) ) ,t ≥0 in unit disk |z|<1 . For estimating of the initial coefficients |c_2 | , |c_3 |, Fekete-Szego ̈ inequality and the  second Hankel determinant have been investigated for the functions in our classes. 

Downloads

Download data is not yet available.

References

Çağlar M, Deniz E, Srivastava HM. Second Hankel determinant for certain subclasses of bi-univalent functions. Turk J Math. 2017 May 22; 41(3): 694-706.

Magesh N, Nirmala J, Yamini J. Initial estimates for certain subclasses of bi-univalent functions with k- Fibonacci numbers. arXiv preprint. arXiv:2001. 2020 Jan 22: 08569.

Özlem Güney H, Murugusundaramoorthy G, Sokol J . Certain subclasses of bi-univalent functions related to k-Fibonacci numbers. Commun. Fac Sci Univ Ank Ser. A1 Math. Stat. 2019; 68(2): 1909-1921.

Özgür NY, Sokół J. On Starlike Functions Connected with k-Fibonacci Numbers. Bull Malays Math Sci Soc. 2015 Jan; 38(1): 249-58.

Fadipe-Joseph OA, Kadir BB, Akinwumi SE, Adeniran EO. Polynomial bounds for a class of univalent function involving sigmoid function. Khayyam J Math. 2018 Jan 1; 4(1): 88-101.

Wanas AK, Khuttar JA. Applications of Borel distribution series on analytic functions. Earthline J Math Sci. 2020 Apr 20; 4(1): 71-82.

Ruscheweyh S. New criteria for univalent functions. Proc. Amer. Math. Soc. 1975 May 1: 109-15.

Noonan JW, Thomas DK. On the second Hankel determinant of areally mean p-valent functions. Trans Amer. Math. Soc. 1976; 223: 337-46.

Noor KI. Hankel determinant problem for the class of functions with bounded boundary rotation. Rev Roum Math Pure Appl. 1983 Jan 1;28(8):731-9.

Ehrenborg R. The Hankel determinant of exponential polynomials. The American Math. Monthly. 2000 Jun 1; 107(6): 557-60.

Mehrok BS, Singh G. Estimate of second Hankel determinant for certain classes of analytic functions. Scientia Magna. 2012 Jul 1; 8(3): 85-94.

Magesh N, Yamini J. Fekete-Szegö problem and second Hankel determinant for a class of bi-univalent functions. Tbil Math J. 2018 Jan; 11(1): 141-57.

Srivastava HM, Altınkaya Ş, Yalcın S. Hankel determinant for a subclass of bi-univalent functions defined by using a symmetric q-derivative operator. Filomat. 2018; 32(2): 503-16.

Güney HÖ, Murugusundaramoorthy G, Srivastava HM. The second Hankel determinant for a certain class of bi-close-to-convex functions. Results Math. 2019 Sep; 74(3): 1-3.

Fekete M, Szegö G. Eine Bemerkung über ungerade schlichte Funktionen. J. london math. soc. 1933 Apr; 1(2): 85-9.

Shehab NH, Juma AR. Third Order Differential Subordination for Analytic Functions Involving Convolution Operator. Baghdad Sc J. 2022; 19(3): 0581-0581.

Challab KA. Study of Second Hankel Determinant for Certain Subclasses of Functions Defined by Al-Oboudi Differential Operator. Baghdad Sc J. 2020 Mar 18; 17(1): 0353-0353.

Frasin BA, Swamy SR, Aldawish I. A Comprehensive Family of Bi univalent Functions Defined by k-Fibonacci Numbers. J Funct Spaces . 2021 Oct 31; 2021.

Shabani MM, Sababe SH. Coefficient bounds for a subclass of bi-univalent functions associated with Dziok- Srivastava operator. Korean J. Math. 2022; 30(1): 73-80.

Srivastava HM, Mishra AK, Gochhayat P. Certain subclasses of analytic and bi-univalent functions. Appl math letters. 2010 Oct 1; 23(10): 1188-92.

Sokol J, İlhan S, Güney H. Second Hankel determinant problem for several classes of analytic functions related to shell-like curves connected with Fibonacci numbers. Turkic World Mathematical Society J Appl Eng Math. 2018 Jan 1; 8(1.1): 220-9.

Downloads

Issue

Section

article