Synthesis and Structural Determination of 6-O-prop-2-ynyl-1,2:3,4-di-O-Isopropylidene-α-D-Galactose


  • Halah Husam Abdulkadhim Al-Asadi Department of Chemistry, College of Science, University of Kerbala, Karbala, Iraq
  • Adnan Ibrahim Mohammed Department of Chemistry, College of Science, University of Kerbala, Karbala, Iraq
  • Baker A. Joda Department of Chemistry, College of Science, University of Kerbala, Karbala, Iraq



DFT calculation, Galactose, Propargyl ethers, Terminal alkynes


In this work, an important sugar alkynyl ether has been synthesized in two subsequent steps starting from commercially available D-galactose (3). This kind of compounds is highly significant in the synthesis of biologically active molecules such as 1,2,3-triazole and isoxazoles. In the first step, galactose (3) was reacted with acetone in the presence of anhydrous copper (II) sulfate to produce 1,2:3,4-di-O-isopropylidene-α-D-galactose (4) in good yield. The latter was reacted with excess of 3-bromoprop-1-yne in DMF in the presence of NaOH pellets to afford the target molecule 5 in a very good yield. The temperature of this step is crucial in determining the reaction yield. The exact structure of compound 5 is identified using NMR technique and DFT calculations. 


Download data is not yet available.


Heravi MM, Dehghani M, Zadsirjan V, Ghanbarian M. Alkynes as Privileged Synthons in Selected Organic Name Reactions. Curr Org Synth. 2019;16(2):205‒243. DOI: 10.2174/1570179416666190126100744. PMID: 31975673.

Gabriele B, Mancuso R, Larock RC. Recent Advances in the Synthesis of Iodoheterocycles via Iodocyclization of Functionalized Alkynes. Curr Org Chem. 2014; 18(3) 341‒358. DOI: 10.2174/13852728113179990034

Guo L, Song F, Zhu S, Li H, Chu L. syn-Selective alkylarylation of terminal alkynes via the combination of photoredox and nickel catalysis. Nat Commun. 2018; 9: 4543‒4550.

Bowen B, Howlett J, Wood W. The removal of acetylene from hydrocarbon gases. J. Chem. Technol. Biotechnol. 1950; 69: 65‒69.

Kimura Y, Mori M, Suzuki A, Kobayashi A. Isolation and Identification of Two Nematicidal Substances from Roots of Erigeron philadelphicus L. and Nematicidal Activities of Their Related Compounds. Agric Biol Chem. 2019; 45(12): 2915‒2917. DOI: 10.1080/00021369.1981.10864986

Stuhlfauth T, Fock H, Huber H, Klug K. The distribution of fatty acids including petroselinic and tariric acids in the fruit and seed oils of the Pittosporaceae, Araliaceae, Umbelliferae, Simarubaceae and Rutaceae. Biochem Syst Ecol. 1985; 13(4): 447‒453. DOI: 10.1016/0305-1978(85)90091-2

Iqbal N, Maiti D, Cho E. Access to Multifunctionalized Benzofurans by Aryl Nickelation of Alkynes: Efficient Synthesis of the Anti-Arrhythmic Drug Amiodarone, Angew Chem Int Ed. 2019; 58 (44): 15808‒15812. DOI:10.1002/anie.201909015.

Carvalho N, Herrmann R, Wagner G. Synthesis of alkynyl-substituted camphor derivatives and their use in the preparation of paclitaxel-related compounds. Beilstein J Org Chem. 2017; 13: 1230–1238. DOI:10.3762/bjoc.13.122.

Jin Y, Duan L, Chen M, Penning TM, Kloosterboer HJ. Metabolism of the synthetic progestogen norethynodrel by human ketosteroid reductases of the aldo-keto reductase superfamily. J Steroid Biochem Mol Biol. 2012; 129(3-5): 139-44. DOI: 10.1016/j.jsbmb.2011.12.002.

Kobaek-Larsen M, Baatrup G, Notabi MK, El-Houri RB, Pipó-Ollé E, Christensen Arnspang E, et al. Dietary Polyacetylenic Oxylipins Falcarinol and Falcarindiol Prevent Inflammation and Colorectal Neoplastic Transformation: A Mechanistic and Dose-Response Study in A Rat Model. Nutrients. 2019; 11(9):2223. DOI: 10.3390/nu11092223

Alabugin IV, Gonzalez-Rodriguez E, Kawade RK, Stepanov AA, Vasilevsky SF. Alkynes as Synthetic Equivalents of Ketones and Aldehydes: A Hidden Entry into Carbonyl Chemistry. Molecules. 2019; 24: 1036. DOI: 10.3390/molecules24061036.

Miura T, Biyajima T, Fujii T, Murakami M. Synthesis of α-Amino Ketones from Terminal Alkynes via Rhodium-Catalyzed Denitrogenative Hydration of N-Sulfonyl-1,2,3-triazoles, J Am Chem Soc. 2012; 134 (1): 194–196. DOI:10.1021/ja2104203.

Zeng M, Herzon SB. Synthesis of 1,3-Amino Alcohols, 1,3-Diols, Amines, and Carboxylic Acids from Terminal Alkynes. J Org Chem. 2015; 80(17): 8604–8618. DOI: 10.1021/acs.joc.5b01220.

Wu X, Tamm M, Recent advances in the development of alkyne metathesis catalysts, Beilstein J Org Chem. 2011; 7: 82–93. DOI:10.3762/bjoc.7.12.

Mohammed AI, Abboud ZH, Alghanimi AHO. Synthesis of D-mannitol substituted ether-linked bis-1,2,3-triazoles as models of gemini surfactants. Tetrahedron Lett. 2012; 53 (38): 5081‒5083. DOI: 10.1016/j.tetlet.2012.07.014.

Mohammed AI, Mansour NH, Mahdi LS. Synthesis and antibacterial activity of 1-N-(β-d-glucopyranosyl)-4-((1-substituted-1H-1,2,3-triazol-4-yl)ethoxymethyl)-1,2,3-triazoles. Arab J Chem. 2017; 10(Suppl 2): S3508‒S3514. DOI: 10.1016/j.arabjc.2014.02.016.

Mohammed AI. Synthesis of Nonionic Surfactants. Sugar-Substituted Ether-Linked Bis-1, 2, 3-Triazoles. Asian J Chem. 2012; 24(12):5585‒5588.

Francis DV, Miles DH, Mohammed AI, Read RW, Wang X. Towards functional fluorous surfactants. Synthesis of hydrophilic fluorous 1,2,3-triazolylmethyl ethers and di(1,2,3-triazolylmethyl) ethers. J Fluorine Chem. 2011; 132 (11): 898‒906. DOI: 10.1016/j.jfluchem.2011.07.002.

Nief OA, Abdullah EK, Alzahawy HMG, Jasim MN. Synthesis, Characterization of Poly Heterocyclic Compounds, and Effect on Cancer Cell (Hep-2) In vitro. Baghdad Sci J. 2018; 15(4): 415‒424. Available from:

AL-Joubory AKJ, Abdullah LW, Mohammed AJ. Synthesis, Characterization and Biological Activity Evaluation of Some Pyrazoles, Thiazoles and Oxazoles Derived from 2-Mercaptoaniline. Baghdad Sci J. 2021; 18(1(Suppl.): 764‒774. Available from:

Vaidya VV, Wankhede KS, Nara SJ, Salunkhe MM, Trivedi GK. Synthesis of Isoxazole Conjugates of 1,4-Benzodioxane Moiety via Intermolecular 1,3-Dipolar Cycloaddition, Synth Commun. 2009; 39(21): 3856‒3866. DOI: 10.1080/00397910902838979.

Vaidya VV, Wankhede KS, Salunkhe MM, Trivedi GK. Synthesis of isoxazole conjugates of sugars via 1,3-dipolar cycloaddition. Canadian J Chem. 2011; 86(2): 138‒141. DOI: 10.1139/v07-145

Roland C, Li H, Abboud K, Wagener KB, Veige AS. Cyclic polymers from alkynes. Nature Chem. 2016; 8: 791–796. DOI:10.1038/nchem.2516.

Yang LC, Han L, Ma HW, Liu P, Shen H, Li C, et al. Synthesis of Alkyne-functionalized Polymers via Living Anionic Polymerization and Investigation of Features during the Post-“thiol-yne” Click Reaction. Chin J Polym Sci. 2019; 37: 841–850. DOI:10.1007/s10118-019-2203-6.

Huizhi L, Xunlai L, Qingquan L. Conjugated Conductive Polymer Materials and its Applications: A Mini-Review. Front Chem. 2021; 9: 728‒733. DOI: 10.3389/fchem.2021.732132.

Kazakov PV, Demina EI. Alkylation of acetylene by tert-butyl alcohol. Russ Chem Bull. 2002; 51: 2134–2135. DOI: 10.1023/A:1021640700304.

Shaw R, Elagamy A, Althagafi I, Pratap R. Synthesis of alkynes from non-alkyne sources. Org Biomol Chem. 2020; 18: 3797‒3817. DOI: 10.1039/D0OB00325E.

Li Ren-Zhe, Liu Da-qi, Niu Dawen. Asymmetric O-propargylation of secondary aliphatic alcohols. Nat Catal. 2020; 3: 672–680. DOI: 10.1038/s41929-020-0462-9

Zhang X, Wei M, Chen J, Liu X. One-pot synthesis of novel ether-linked diisoxazole derivatives via sequential O-propargylation and 1,3-dipolar cycloaddition from 2-bromohomoallylic alcohols, Synth Commun. 2020; 50(1): 97‒103. DOI: 10.1080/00397911.2019.1684522.

Mohammed AI, Jwad RS. Synthesis and NMR Study of Some Important Glucopyranosyl Derivatives. J Kerbala Univ. 2011; 9(1): 42‒48.

Stick RV, Tilbrook DMG. The Synthesis of Some Octenoses as Potential Precursors to Lincosamine, a Derived Portion of the Antibiotic Lincomycin. Australian J Chem. 1990; 43: 1643‒1655. DOI: 10.1071/CH9901643.

Jwad RS, Synthesis of 1-Nonyl-4-[(6-Deoxy-1,2:3,4-Di-O-Isopropylidene-α-D-Galactos-6-yl)oxymethyl]1H-1,2,3-Triazole Via Click Chemistry, ANJS. 2011; 14 (1): 58‒67.

Mahdi LS, Mohammed AI, Mohammed MJ. Convenient synthesis of dipropargyl ether derivative of D-mannose, AIP Conf Proc 2020; 2290: 030024. DOI: 10.1063/5.0027403.

Hajlaoui K, El Guesmi A, Ben Hamadi N, Msaddek M. Synthesis of Novel Pyrazole–sucrose Derivatives by 1,3-dipolar Cycloaddition. J Heterocycl Chem. 2018; 55(9): 2069‒2074. DOI: 10.1002/jhet.3246.

Neese F. The ORCA program system, Wiley Interdiscip Rev: Comput Mol Sci. 2012; 2(1): 73‒78. DOI: 0.1002/wcms.81.

Neese F. Software update: the ORCA program system, version 4.0, Wiley Interdiscip Rev: Comput Mol Sci. 2017; 8: e1327. DOI: 10.1002/wcms.1327

Wanga T, Demchenko AV. Synthesis of carbohydrate building blocks via regioselective uniform protection/deprotection strategies. Org Biomol Chem. 2019; 17: 4934‒4950. DOI: 10.1039/C9OB00573K.

Klaus B. Functionalized Allenes: Generation by Sigmatropic Rearrangement and Application in Heterocyclic Chemistry. Curr Org Chem. 2019; 23(27): 3040‒3063. DOI: 10.2174/1385272823666191112102523.

Klukowski P, Schubert M. Chemical shift-based identification of monosaccharide spin-systems with NMR spectroscopy to complement untargeted glycomics, Bioinform. 2019; 35(2): 293‒300. DOI: 10.1093/bioinformatics/bty465.

Marszalek PE, Pang Y, Li H, El Yazal J, Oberhauser AF, Fernandez JM. Atomic levers control pyranose ring conformations, Proc Natl Acad Sci. 1999; 96(14): 7894‒7898. DOI: 10.1073/pnas.96.14.7894.

Inagaki M, Iwakuma R, Kawakami S, Otsuka H, Rakotondraibe HL. Detecting and Differentiating Monosaccharide Enantiomers by 1H NMR Spectroscopy, J Nat Prod. 2021; 84(7): 1863–1869. DOI: 10.1021/acs.jnatprod.0c01120.

Coxon B. Chapter 3 Developments in the Karplus Equation as they Relate to the NMR Coupling Constants of Carbohydrates. Adv Carbohydr Chem Biochem. 2009; 62: 17‒82. DOI: 10.1016/S0065-2318(09)00003-1.