This is a preview and has not been published.

Carbon Nanotubes: Synthesis via Flame Fragment Deposition (FFD) Method from Liquefied Petroleum Gas


  • Samaa S. Mahmood University of Babylon, College of Science, Department of Chemistry, Babylon, Iraq.
  • Falah H. Hussien University of Babylon, College of Pharmacy, Babylon, Iraq.
  • Abbas J. Atiyah University of Babylon, College of Science, Department of Chemistry, Babylon, Iraq.



Carbon nanotubes, flame fragment deposition, Hydrogen peroxide, liquefied petroleum gas, PAHs


The current study uses the flame fragment deposition (FFD) method to synthesize carbon nanotubes (CNTs) from Iraqi liquefied petroleum gas (LPG), which is used as a carbon source. To carry out the synthesis steps, a homemade reactor was used. To eliminate amorphous impurities, the CNTs were sonicated in a 30 percent hydrogen peroxide (H2O2) solution at ambient temperature. To remove the polycyclic aromatic hydrocarbons (PAHs) generated during LPG combustion, sonication in an acetone bath is used. The produced products were investigated and compared with standard Multi-walled carbon nanotube MWCNTs (95%), Sigma, Aldrich, using X-ray diffraction (XRD), thermo gravimetric analysis (TGA), Raman spectroscopy, scanning electron spectroscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS) and Transmission Electron Microscopy (TEM). Under the applied experimental circumstances, the obtained characterization data confirm the synthesis of multi-wall carbon nanotubes (MWCNTs) with portion from few wall carbon nanotubes (FWCNTs). The average diameter of synthesized Carbon nanotubes ranged from 31.26 to 78.00 nm, with a purity of more than 65 percent.


Download data is not yet available.


Baughman R H, Zakhidov A A, De Heer W A. Carbon nanotubes--the route toward applications. Science. 2002; 297(5582): 787-792.

Popov V N. Carbon nanotubes: prop

erties and application. Mater Sci Eng: R: Rep. 2004; 43(3): 61-102. ‏

Liu X Y, Huang B C, Coville N J. The Fe (CO)5 catalyzed pyrolysis of pentane: carbon nanotube and carbon nanoball formation. Carbon. 2002; 40(15): 2791-2799. ‏

Zhou Z Ci L, Chen X, Tang D, Yan X, Liu D, Liang Y, et al. Controllable growth of double wall carbon nanotubes in a floating catalytic system. Carbon. 2003; 41(2): 337-342. ‏

Chang T E, Jensen L R, Kisliuk A, Pipes R B, Pyrz R, Sokolov A P. Microscopic mechanism of reinforcement in single-wall carbon nanotube/polypropylene nanocomposite. Polymer. 2005; 46(2): 439-444. ‏

Zaidi B. Introductory chapter: Introduction to photovoltaic effect. Solar Panels and Photovoltaic Materials. 2018; 1-8. ‏

Husaen S I. Mechanical properties of carbon nanotube reinforced Epoxy Resin composites. Baghdad Sci J. 2012; 9(2): 330-334. ‏

Lee S Y, Park S J. Influence of the pore size in multi-walled carbon nanotubes on the hydrogen storage behaviors. J Solid State Chem. 2012; 194: 307-312. ‏

Prokudina N A, Shishchenko E R, Joo O S, Kim D Y, Han S H. Carbon nanotube RLC circuits. Adv Mater. 2000; 12(19): 1444-1447. ‏

Hussein F H, Abdulrazzak F H, Alkaim A F. Nanomaterials: Biomedical and Environmental Applications, Chapter 1: Nanomaterials: Synthesis and Characterization, Welly, 2018; 1st ed:3-60.

Hammadi A H, Jasim A M, Abdulrazzak F H, Al-Sammarraie A, Cherifi Y, Boukherroub R, et al. Purification for carbon nanotubes synthesized by flame fragments deposition via hydrogen peroxide and acetone. Materials .2020; 13(10): 2342. ‏

Chaturvedi P, Verma P, Singh A, Chaudhary P K, Basu P K. Carbon Nanotube-Purification and sorting protocols. Def Sci J. 2008; 58(5): 591. ‏

Liu J, Rinzler A G, Dai H, Hafner J H, Bradley R K, Boul P J, et al. Fullerene Pipes. Science .1998; 280(5367) :1253-1256.

Chiang I W, Brinson B E, Huang A Y, Willis P A, Bronikowski M J, Margrave J L, et al. Purification and characterization of single-wall carbon nanotubes (SWNTs) obtained from the gas-phase decomposition of CO (HiPco process). J Phys Chem B. 2001; 105(35): 8297-8301.

Chiang I W, Brinson B E, Smalley R E, Margrave J L, Hauge R H. Purification and characterization of single-wall carbon nanotubes. J Phys Chem B.2001; 105(6): 1157-1161. ‏‏

Hammadi A H, Abdulrazzak F H, Atiyah A J, Hussein F H. Synthesis of Carbon Nano tubes by Flame Fragments Deposition of Liquefied Petroleum Gas. Org Med Chem Int J .2017; 29(12): 2804-2808.

Alwindawi H F, Ismail S, Nafaee Z H, Salman H D, Balakit A A, Hussein F H. Comparison between Biological Activities of Commercial and Synthesized Carbon Nanotubes by Flame Fragments Deposition Technique. Baghdad Sci J. 2019; 16(4):878-885.

Kondo D, Sato S, Awano Y. Low-temperature synthesis of single-walled carbon nanotubes with a narrow diameter distribution using size-classified catalyst nanoparticles. Chem Phys Lett. 2006; 422, 481-487.

Toussi S M, Fakhru L-R A, Chuah A, Suraya A. Effect of synthesis condition on the growth of SWCNTs via catalytic chemical vapour deposition. Sains Malays. 2011; 40(3), 197-201. ‏

Singh C, Shaffer M S, Koziol K K, Kinloch I A, Windle A H. Towards the production of large-scale aligned carbon nanotubes. Chem Phys Lett. 2003; 372(5-6), 860-865. ‏

Colindres S C, Aguir K, Cervantes Sodi F, Vargas L V, Salazar J A M, Febles V G. Ozone sensing based on palladium decorated carbon nanotubes. Sensors .2014; 14(4): 6806-6818. ‏

Akhavan O, Azimirad R, Safa S, Larijani M M. Visible light photo-induced antibacterial activity of CNT–doped TiO2 thin films with various CNT contents. J Mater Chem. 2010; 20(35): 7386-7392. ‏

Mansfield E, Kar A, Hooker S A. Applications of TGA in quality control of SWCNTs. Anal Bioanal Chem. 2010; 396(3):1071-1077. ‏

Kittel C, McEuen P, McEuen P. Introduction to solid state physics .1996; 8: 105-130. New York: Wiley. ‏

Dresselhaus M S, Eklund P C. Phonons in carbon nanotubes. Adv Phys. 2000; 49(6): 705-814.

Nishimura K, Okazaki N, Pan L, Nakayama Y. In situ study of iron catalysts for carbon nanotube growth using X-ray diffraction analysis. Jpn J Appl Phys. 2004; 43(4A): L471.