This is a preview and has not been published.

Quantum Theory of Atom in Molecules Investigation Trinuclear Ruthenium: DFT Approach


  • Manal Abed Mohammed Department of Basic Medical Science, College of Dentistry, University of Kerbala, Kerbala, Iraq.



Ru cluster, Aim, DFT, Laplacian, Delocalization


The topological indices of the "[(µ3-2, 5-dioxyocyclohexylidene)-bis ((2-hydrido)-nonacarbonyltriruthenium]” were studied within the quantum theory of atoms in the molecule (QTAIM), clusters are
analyzed using the density functional theory (DFT). The estimated topological variables accord with prior
descriptions of comparable transition metal complexes. The Quantum Theory of Atom, in molecules
investigation of the bridging core component, Ru3H2, revealed critical binding points (chemical bonding)
between Ru (1) and Ru (2) and Ru (3). Consequently, delocalization index for this non-bonding interaction
was calculated in the core of Ru3H2, the interaction is of the (5centre–5electron) class.


Download data is not yet available.


Nielsen MT, Padilla R, Nielsen M. Homogeneous Catalysis by Organometallic Polynuclear Clusters. Clust Sci. 2019; 3, 456-463.

Dikhtiarenko A, Khainakov S, Gimeno J. Mixed-valence μ3-oxo-centered triruthenium cluster [Ru3(II,III,III)(μ3-O)(μ-CH3CO2)6(H2O)3]•2H2O: Synthesis, structural characterization, valence-state delocalization and catalytic behavior. Inorganica Chim Acta. 2017; 107-116, .

Al-Ibadi MA, Taha A, Hasan Duraid AH, Alkanabi T. A theoretical investigation on chemical bonding of the bridged hydride triruthenium cluster: [Ru3 (μ-H)(μ3-κ2-hamphox-N,N)(CO)9]. Baghdad Sci J. 2020; 17(2): 488–493, .

Helal SR, Al-Ibadi MAM, Hasan AH, Taha A. The QTAIM Approach to Chemical Bonding in Triruthenium Carbonyl Cluster: [Ru3 (μ-H)(μ 3-κ 2-Haminox-N,N)(CO)9]. Phys Conf Ser. 2018; 1032(1).

FB B, Lewis J, Road L. The Triruthenium Cluster Anion [ Ru3H(CO)II]- : Preparation, Structure, and Fluxionality. J Chem Soc Dalton trans. 1979; 76(1356): 1356–1361. .

Kameo H, Ito Y, Shimogawa R, Koizumi A, Chikamori H, Fujimoto J , et al. Synthesis and Characterisation of Tetranuclear Ruthenium Polyhydrido Clusters with Pseudo-Tetrahedral Geometry. Dalton Trans. 2017; 77:6-11. .

Shimogawa R, Tsurumaki Y, Suzuki H, Takao T. Selective Synthesis of a Triruthenium Pentahydrido Complex with Mixed-Cp Ligands C 5. Organometallics. 2019; 3 :345-354, .

Heijser W, Baerends EJ, Ros P. Electronic Structure of Binuclear Metal Carbonyl Complexes Diatomic metals and metallic clusters. Faraday Symp. Chem. Soc; 1979; 211-234. .

Bader RFW. Atoms in Molecules. Acc Chem Res. 1985;9–15. doi:10.1002/0470845015.caa012.

Bader RFW. A Quantum Theory of Molecular Structure and Its Applications. Chem. Rev.. 1991;91(5):893–928, .

Briard P, Cabeza JA, Llamazares A, Ouahab, L, and Riera V.. Synthesis and Structural Characterization of Triruthenium Cluster Complexes Containing Bridging Vl-Phenyl and Terminal Vl-Phenyl Ligands Arising from the Cleavage of Triphenylphosphine Ligands. Organometallics. 1993; 12:1006–1008.

Cabeza JA, Franco RJ, Llamazares A, Riera V, Prez-carreiio E, Van Der Maelen JF. η^1-Aryl-Bridged Triruthenium Cluster Complexes. Organometallics. 1994;77(12):55–59.

Cabeza JA, F J, Maelen VD, Granda SG. Topological Analysis of the Electron Density in the N-Heterocyclic Carbene Triruthenium Cluster [Ru3(μ-H)2(μ3-MeImCH)(CO)9] (Me2Im = 1,3-dimethylimidazol-2-ylidene). Organometallics , 2009; 28(13): 3666–3672, .

Hsu H, Wilson SR, Shapley JR. Triruthenium cluster complexes of C70. Synthesis and structural characterization of {Ru3(CO)9}x(µ3-η^2, η^2, η^2-C70)] (x = 1, 2). Chem Commun. 1997:1125–1126.

Al-ibadi MAM. QTAIM Analysis of the Bonding in Pyridyl- N- Heterocyclic Carbene Triruthenium carbonyl cluster: [Ru3(μ-H)(μ-κ3C2,N-pyCH2 ImMe) (CO)9] (ImMe=3-methylimidazol-2- ylidene). J Univ Babylon Pure Appl Sci. 2018; 26(6): 322–335.

Al-Kanabi D T O, Al-ibadi MAM, Mohammed H J. Theoretical topological analysis of the electron density in Picolyl N-Heterocyclic Carbene Triruthenium carbonyl cluster. J Kufa Chem Sci. 2014; 3(9): 1–14.

Pelayo-vázquez JB, González-bravo FJ, Leyva MA, Rosales-hoz MJ. Reactivity of 1 . 4-benzoquinone with trinuclear ruthenium and osmium clusters : Facile hydrogenation of the quinoid fragment. J Organmet. Chem. 2016; 812c : 207-216

MacDonald B, Ranjan P, Chipman H. GPfit: An R Package for Fitting a Gaussian Process Model to Deterministic Simulator Outputs. Stat. Softw. 2015; 64(12): A1-23.

Huzinaga S, Klobukowski M. Well-tempered Gaussian basis sets for the calculation of matrix Hartree-Fock wavefunctions. Chem Phys Lett. 1993; 212(3-4): 260-264.

Huzinaga S, Miguel B. A comparison of the geometrical sequence formula and the well-tempered formulas for generating GTO basis orbital exponents. Chem Phys Lett. 1990;175(4):289–291. .

Biegler-Konig F, Schonbohm J. Update of the AIM2000-Program for atoms in molecules Comput Chem. 2002; 23(15): 1489-1494. .

Nakanishi W, Hayashi S, Narahara K. Atoms-in-molecules dual parameter analysis of weak to strong interactions: Behaviors of electronic energy densities versus Laplacian of electron densities at bond critical points. Phys Chem A. 2008;112(51):13593–13599. .

Grimme S. Theoretical bond and strain energies of molecules derived from properties of the charge density at bond critical points. J Am Chem Soc. 1996; 118(6): 1529–1534. .

Bader RFW. A bond path: a universal indicator of bonded interactions. J Phys Chem A. 1998; 102(37): 7314–7323.

Gatti C. Chemical Bonding in Crystals: new dirrections. Cryst Mater. 2005; 220(5-6): 399-457.

Bader RFW. Atoms in Molecules. Acc Chem Res. 1985; 18(1): 9-15.

Matta CF. On the connections between the quantum theory of atoms in molecules (QTAIM) and density functional theory (DFT): a letter from Richard F. W. Bader to Lou Massa. Struct Chem. 2017; 28(5): 1591-1597.

Guisasola EB ,Gutiérrez LJ, Salcedo RE, Garibotto FM, Andujar SA, Enriz RD, et al. Conformational transition of Aβ42 inhibited by a mimetic peptide. A molecular modeling study using QM/MM calculations and QTAIM analysis. Comput Theor Chem. 2016;1080:56–65, .

Espinosa E, Alkorta I, Rozas I, Elguero J, Molins E. About the evaluation of the local kinetic, potential and total energy densities in closed-shell interactions. Chem Phys Lett. 2001; 336(5-6): 457–461, .

LaPointe SM, Farrag S, Bohórquez HJ, Boyd RJ. QTAIM study of an α-helix hydrogen bond network. J Phys Chem B. 2009; 113(31): 10957–10964, .

Moosavi M, Banazadeh N, Torkzadeh M. Structure and Dynamics in Amino Acid Choline-Based Ionic Liquids: A Combined QTAIM, NCI, DFT, and Molecular Dynamics Study. J Phys Chem B. 2019; 123(18): 4070–4084, .

Macchi P, Sironi A. Chemical bonding in transition metal carbonyl clusters: Complementary analysis of theoretical and experimental electron densities. Coord Chem Rev. 2003; 238–239: 383–412, .

Razooqi MS, Al-ani HN. Quantum Mechanical Calculations and Electrochemical Study of Vibrational Frequencies, Energies in Some Flavonoids molecules. Iraqi J Sci. 2022; 63(6): 2331–2344. .

Al-kirbasee NE, Raheem S, Alhimidi H, Al-ibadi MAM. QTAIM study of the bonding in triosmium trihydride cluster. Baghdad J Sci. 2021; 18(4): 1279–1285.

Ridha AR, Abbas ZM. Theoretical study of density distributions and size radii of 8B and 17Ne. Iraqi J Sci. 2018; 59(2): 1046–1056, .

Gervasio G, Bianchi R, Marabello D. About the topological classification of the metal-metal bond. Chem Phys Lett. 2004; 387(4–6): 481–484, .

Macchi P, Donghi D, Sironi A. The Electron Density of Bridging Hydrides Observed via via Experimental and Theoretical Investigations on [Cr2 (µ2-H)(CO)10]-. J Am Chem Soc. 2005; 127(47): 16494–16504.