This is a preview and has not been published.

Antioxidant Activity of Endophytic Bacteria isolated from (Pyrrosia piloselloides) (L) M.G. Price


  • Achmad Arifiyanto Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Lampung, Bandar Lampung, Lampung, Indonesia.
  • Salman Farisi Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Lampung, Bandar Lampung, Lampung, Indonesia.



Antioxidants, Bacillus, Dragon scales, Endophytic-bacteria, Phenols


Endophytic bacteria produced analogous secondary metabolites of their hosts. Similarly, the ability to generate antioxidants is not an exception. Dragon scales (Pyrrosia piloselloides), an epiphytic plant of the Polypodiaceae family, are frequently overlooked. This research aims to isolate antioxidant-producing bacteria from dragon-scale fern leaves. The antioxidant activities were tested after the extraction procedure using ethanolic extract. Bacteria were characterized and selected as candidates for antioxidant production by screening for the production of total phenolic compounds. Antioxidant levels were determined utilizing the ABTS, FRAP, and DPPH techniques. The preliminary findings of the entire phenolic compound test revealed that isolates B2, B3, C, and F produced the most phenolic compounds. The highest antioxidant activity was created by bacterial isolates B3. Bacterial isolates D1 have similar characteristics to B3 and it has been identified as Bacillus subtilis isolates D1AS. The assessment technique and extract dosages have the greatest effect on antioxidant concentration. In comparison to other approaches, the DPPH method yields considerable results when screening prospective isolates to manufacture antioxidants. Testing the ability of the results of bacterial extracts on other therapeutic effects needs to be done to ensure that the antioxidant abilities obtained in this study continue to be developed.


Download data is not yet available.


Wu W, Chen W, Liu S, Wu J, Zhu Y, Qin L, et al. Beneficial Relationships Between Endophytic Bacteria and Medicinal Plants. Front Plant Sci. 2021; 12: 646146.

Jia M, Chen L, Xin HL, Zheng CJ, Rahman K, Han T, et al. A friendly relationship between endophytic fungi and medicinal plants: A systematic review. Front Microbiol. 2016; 7(JUN): 1–14.

Photolo MM, Mavumengwana V, Sitole L, Tlou MG. Antimicrobial and Antioxidant Properties of a Bacterial Endophyte, Methylobacterium radiotolerans MAMP 4754, Isolated from Combretum erythrophyllum Seeds. Int J Microbiol. 2020; 2020: 9483670.

Yuliastuti, Rahayu R, Efrizal. Acute Toxicity Effects of Leaf Extract Dragon Scales Fern ( Drymoglossum piloselloides (L.)Presl) on He. J Biol Univ Andalas. 2014; 3(November): 332–6.

Asiandu AP, Widjajanti H, Nurnawati E. Exploration of Endophytic Fungi of Dragon Scale ’ s Fern ( Pyrrosia. Biovalentia. 2019; 5(2): 25–32.

Sul’ain MD, Zakaria F, Johan MF. Anti-proliferative effects of methanol and water extracts of Pyrrosia piloselloides on the hela human cervical carcinoma cell line. Asian Pacific J Cancer Prev. 2019; 20(1): 185–92.

Sahid A, Pandiangan D, Siahaan P, Rumondor MJ. Uji Sitotoksisitas Ekstrak Metanol Daun Sisik Naga (Drymoglossum piloselloides Presl.) terhadap Sel Leukemia P388. J MIPA. 2013; 2(2): 94.

Wulandari ET, Elya B, Hanani E, Pawitan JA. In vitro antioxidant and cytotoxicity activity of extract and fraction Pyrrosia piloselloides (L) M.G price. Int J PharmTech Res. 2013; 5(1): 119–25.

Thyagarajan A, Sahu RP. Potential Contributions of Antioxidants to Cancer Therapy: Immunomodulation and Radiosensitization. Integr Cancer Ther. 2018 Jun; 17(2): 210–6.

Azmanova M, Pitto-Barry A. Oxidative Stress in Cancer Therapy: Friend or Enemy? ChemBioChem. 2022 Jan 10; 23(10): e202100641.

Algarni AA. Combining of molecular 16S rRNA gene and metabolic fingerprinting through biolog system for the identification of streptomycetes in Saudi Arabia. J King Saud Univ - Sci [Internet]. 2022; 34(3): 101889.

Arifiyanto A, Surtiningsih T, Ni’matuzahroh, Fatimah, Agustina D, Alami N. Antimicrobial activity of biosurfactants produced by actinomycetes isolated from rhizosphere of Sidoarjo mud region. Biocatal Agric Biotechnol. 2020 Mar 1; 24.

Arifiyanto A, Afriani H, Putri MH, Damayanti B, Riyanto CLR. The biological prospective of red-pigmented bacteria cultured from contaminated agar media. Biodiversitas, J Biol Divers. 2021; 22(3): 1152–9.

Dholakiya RN, Kumar R, Mishra A, Mody KH, Jha B. Antibacterial and antioxidant activities of novel actinobacteria strain isolated from Gulf of Khambhat, Gujarat. Front Microbiol. 2017; 8(DEC): 1–16.

Chaves N, Santiago A, Alías JC. Quantification of the antioxidant activity of plant extracts: Analysis of sensitivity and hierarchization based on the method used. Antioxidants. 2020; 9(1).

Mariani F, Tammachote R, Kusuma IW, Chavasiri W, Punnapayak H, Prasongsuk S. Phenolic contents and antioxidant activities of leaf extracts from elaeocarpus submonoceras miq. Songklanakarin J Sci Technol. 2021; 43(2): 531–6.

Rani R, Arora S, Kaur J, Manhas RK. Phenolic compounds as antioxidants and chemopreventive drugs from Streptomyces cellulosae strain TES17 isolated from rhizosphere of Camellia sinensis. BMC Complement Altern Med. 2018 Mar; 18(1): 82.

Tan LTH, Chan KG, Pusparajah P, Yin WF, Khan TM, Lee LH, et al. Mangrove derived Streptomyces sp. MUM265 as a potential source of antioxidant and anticolon-cancer agents. BMC Microbiol. 2019; 19(1): 1–16.

Arivizhivendhan K V., Mahesh M, Boopathy R, Swarnalatha S, Regina Mary R, Sekaran G. Antioxidant and antimicrobial activity of bioactive prodigiosin produces from Serratia marcescens using agricultural waste as a substrate. J Food Sci Technol [Internet]. 2018; 55(7): 2661–70.

Maesaroh K, Kurnia D, Al Anshori J. Perbandingan Metode Uji Aktivitas Antioksidan DPPH, FRAP dan FIC Terhadap Asam Askorbat, Asam Galat dan Kuersetin. Chim Nat Acta. 2018; 6(2): 93–100.

Sharma P, Jha AB, Dubey RS, Pessarakli M. Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions. Polle A, editor. J Bot. 2012; 2012: 217037.

Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev. 2010 Jul; 4(8): 118–26.

Sharifi-Rad M, Anil Kumar N V, Zucca P, Varoni EM, Dini L, Panzarini E, et al. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front Physiol. 2020; 11: 694.

Pham-Huy LA, He H, Pham-Huy C. Free radicals, antioxidants in disease and health. Int J Biomed Sci. 2008 Jun; 4(2): 89–96.

Rahman L, Shinwari ZK, Iqrar I, Rahman L, Tanveer F. An assessment on the role of endophytic microbes in the therapeutic potential of Fagonia indica. Ann Clin Microbiol Antimicrob. 2017 Aug; 16(1): 53.

Tsutsumi C, Praptosuwiryo TN, Kato M. A Preliminary Study on Mild Hemiparasitic Epiphytic Fern Pyrrosia piloselloides (Polypodiaceae). Bull Natl Mus Nat Sci, Ser B. 2018; 44(3): 121–5.

Lakhundi S, Siddiqui R, Khan NA. Cellulose degradation: a therapeutic strategy in the improved treatment of Acanthamoeba infections. Parasit Vectors. 2015 Jan; 8: 23.

Phuyal N, Jha PK, Raturi PP, Rajbhandary S. Total Phenolic, Flavonoid Contents, and Antioxidant Activities of Fruit, Seed, and Bark Extracts of Zanthoxylum armatum DC. Yebra-Biurrun MC, editor. Sci World J. 2020; 2020: 8780704.

Parikh B, Patel VH. Total phenolic content and total antioxidant capacity of common Indian pulses and split pulses. J Food Sci Technol. 2018 Apr; 55(4): 1499–507.

Alam MN, Bristi NJ, Rafiquzzaman M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm J. 2013; 21(2): 143–52.

Hateet RR. Evaluation of bioactivity against some pathogenic bacteria and oxidation for fungal secondary metabolites of Fusarium solani isolated from soil. Baghdad Sci J. 2017 Sep 3; 14(3 SE-):497.

Pokorná J, Venskutonis PR, Kraujalyte V, Kraujalis P, Dvorák P, Tremlová B, et al. Comparison of different methods of antioxidant activity evaluation of green and roast C. Arabica and C. Robusta coffee beans. Acta Aliment. 2015; 44(3): 454–60.

Ali EH, Mohammed KR. Extraction, Purification and Characterization of Peroxidase from Pseudomonas aeruginosa and Utility as Antioxidant and Anticancer. Baghdad Sci J. 2019; 16(4): 824–8330.

Busman H, Lestari RP, Rosa E, Arifiyanto A. Kersen (Muntingia calabura L.) Ethanol Extract Repairs Pancreatic Cell Damage, Total Coliforms, and Lactic Acid Bacteria in Hyperglycemic Mice. J Pure Appl Microbiol. 2022; 16(3): 1943–52.

Lestari MD, AR MM, Setiawati UN, Nukmal N, Setyaningrum E, Arifiyanto A, et al. Bioaccumulation and Resistance Activity of Lead by Streptomyces sp . strain I18. J Sumberd Alam dan Lingkung. 2022; 9(1): 1–6.

Arias Padró MD, Caboni E, Salazar Morin KA, Meraz Mercado MA, Olalde-Portugal V. Effect of Bacillus subtilis on antioxidant enzyme activities in tomato grafting. PeerJ. 2021; 9: e10984.

Sumithra TG, Sharma KSR, Gangadharan S, Suresh G, Prasad V, Amala P V, et al. Dysbiosis and Restoration Dynamics of the Gut Microbiome Following Therapeutic Exposure to Florfenicol in Snubnose Pompano (Trachinotus blochii) to Aid in Sustainable Aquaculture Production Strategies. Front Microbiol. 2022; 13: 881275.