This is a preview and has not been published.

Growth of Different Zinc Oxide Nanostructures under Hydrothermal pH Values




Flowerlike, Nanostructure, Rodlike, Seed layer, ZnO hydrothermal


Flower- and rod-like nanostructures of zinc oxide were prepared by the hydrothermal method at 90°C for three hours. Three 0.028 molar solutions, with pH values of 9, 10, and 11, were deposited on glass substrate/ZnO seed layers. All the prepared samples had a polycrystalline diffraction pattern with dominant diffraction from the (002) plane. With increasing pH, the crystallite size increased to a maximum of 37.6 nm. The importance of the research lies in the growth of different nanostructures of zinc oxide by controlling the degree of pH, as the results showed the emergence of flower structures ZnO NFs at pH 11 with a particle size of 100-800 nm, and the development of nanostructures in the form of a bundle of rods at pH 10 with a particle size of 500-800 nm and the development of ZnO NRs in the form of solitary rods perpendicular to the surface at pH 9, with a grain size of 70-80 nm. The optical properties showed a decrease from 78.75% to 79.32% as the pH was increased from 9 to 11, and the value of the energy gap increased from 3.18 eV to 3.31 eV with the increase in the pH value from 9 to 11.


Download data is not yet available.


Kumbhar D, Kumbhar S, Salunke G, Nalawade R. Effect of Cu doping on structural and optical properties of ZnO nanoparticles using sol–gel method. Macromol Symp. 2019; 387(1): 1800192.

Verma KC, Goyal N, Kotnala RK. Lattice defect formulated ferromagnetism and UV photo-response in pure and Nd, Sm substituted ZnO thin films. Phys Chem Chem Phys. 2019; 21(23): 12540-54.

Linghu J, Song T, Yang T, Zhou J, Lim K. Computational prediction of stable semiconducting Zn-C binary compounds. Mater Sci Semicond Process. 2023; 155(1): 107237.

Hassan ES, Abdulmunem OM. Measuring the Response of Annealed Zinc Oxide Thin Films to Ethanol Gas. Braz J Phys. 2022; 52(5): 160.

Elmas S, Pat S, Mohammadi R, Musaoğlu C. Determination of physical properties of graphene doped ZnO (ZnO: Gr) nanocomposite thin films deposited by a thermionic vacuum arc technique. Physica B. 2019; 557(27): 33.

Habis C, Zaraket J, Aillerie M. Transparent Conductive Oxides. Part II. Specific Focus on ITO, ZnO-AZO, SnO2-FTO Families for Photovoltaics Applications. Defect Diffus Forum.2022; 417(4): 257-272.

Mikhlif HM, Dawood MO, Abdulmunem OM, Mejbel MK. Preparation of High-Performance Room Temperature ZnO Nanostructures Gas Sensor. Acta Phys Pol A. 2021; 140(4).

Hasanpoor M, Aliofkhazraei M, Delavari H. In-situ study of mass and current density for electrophoretic deposition of zinc oxide nanoparticles. Ceram Int. 2016; 42(6): 6906-6913.

Abdulmuem OM, Ali MJ, Hassan ES. Optical and structural characterization of aluminum doped zinc oxide thin films prepared by thermal evaporation system. Opt Mater. 2020; 109: 110374.

Alwash A. The green synthesize of zinc oxide catalyst using pomegranate peels extract for the photocatalytic degradation of methylene blue dye. Baghdad Sci J. 2020; 17(3): 0787.

Juraina MD, Ismayadi I, Muhammad RY, Suraya AR. Morphological effect on conductivity performance of ZnO/carbon nanotubes cotton hybrid, Appl Surf Sci. 2022; 7: 100211.

Raizada P, Sudhaik A, Singh P. Photocatalytic water decontamination using graphene and ZnO coupled photocatalysts. Mater Sci Technol. 2019; 2(3): 509-529.

Amakali T, Daniel LS, Uahengo V, Dzade NY, de Leeuw NH. Structural and Optical Properties of ZnO Thin Films Prepared by Molecular Precursor and Sol–Gel Methods. Crystals.2020; 10(2): 132.

Wu Wei-Che, Juang Yung-Der. The optical properties of Mg-doped ZnO quantum dots. Solid State Commun. 2022; 350: 114791.

Wang ZL. Novel nanostructures of ZnO for nanoscale photonics, optoelectronics, piezoelectricity, and sensing. Appl Phys A. 2007; 88(1): 7-15.

Abdussalam-Mohammed W. Comparison of chemical and biological properties of metal nanoparticles (Au, Ag), with metal oxide nanoparticles (ZnO-NPs) and their applications. Adv J Chem A. 2020; 3(2): 192-210.

Nunes D, Pimentel A, Gonçalves A, Pereira S, Branquinho R. Metal oxide nanostructures for sensor applications. Semicond Sci Technol. 2019; 34(4): 043001.

Kaur N, Singh M, Comini E. One-dimensional nanostructured oxide chemoresistive sensors. Langmuir. 2020; 36(23): 6326-6344.

Fang X, Bando Y, Gautam UK, Zhai T, Zeng H. ZnO and ZnS nanostructures: ultraviolet-light emitters, lasers, and sensors. Crit Rev Solid State Mater Sci. 2009; 34(3): 190-223.

Zhang J, Liu X, Neri G, Pinna N. Nanostructured materials for room‐temperature gas sensors. Adv Mater. 2016; 28(5): 795-831.

Cao P, Yang Z, Navale ST, Han S, Liu X, Liu W. Ethanol sensing behavior of Pd-nanoparticles decorated ZnO-nanorod based chemiresistive gas sensors. Sens Actuators B Chem. 2019; 298: 126850.

Abbas KN, Bidin N, Sabry RS. Controllable ZnO nanostructures evolution via synergistic pulsed laser ablation and hydrothermal methods. Ceram Int. 2016; 42(12): 13535-13546.

Sakata K, Minhová Macounová K, Nebel R. pH dependent ZnO nanostructures synthesized by hydrothermal approach and surface sensitivity of their photo electrochemical behavior SN. Appl Sci. 2020; 2(2): 203.

Rizwan Wahab, Young-Soon Kim, Hyung-Shik Shin. Synthesis Characterization and Effect of pH Variation on Zinc Oxide Nanostructures. Mater Trans. 2009; 50(8): 2092-2097.

Rajasekaran P, Kannan H, Das S, Young M, Santra S. Comparative analysis of copper and zinc based agrichemical biocide products: materials characteristics, phytotoxicity and in vitro antimicrobial efficacy. AIMS Environ. Sci. 2016; 3(3): 439-455.

Manabeng M, Mwankemwa BS, Ocaya RO, Motaung TE, Malevu TD. A Review of the Impact of Zinc Oxide Nanostructure Morphology on Perovskite Solar Cell Performance. Processes. 2022; 10(9): 1803.

Al-Enizi AM, Shaikh SF, Tamboli AM, Marium A, Ijaz MF, Ubaidullah M, Moydeen Abdulhameed M, Ekar SU. Hybrid ZnO Flowers-Rods Nanostructure for Improved Photodetection Compared to Standalone Flowers and Rods. Coatings. 2021; 11(12): 1464.

Amin G, Asif MH, Zainelabdin A, Zaman S, Nur O, and Willander M. Influence of pH, Precursor Concentration Growth Time and Temperature on the Morphology of ZnO Nanostructures Grown by the Hydrothermal Method. J Nanomater. 2011; 10(1155): 269692.

Agarwal S, Rai P, Gatell EN, Llobet E, Güell F. Gas sensing properties of ZnO nanostructures (flowers/rods) synthesized by hydrothermal method. Sens Actuators B Chem. 2019; 292: 24-31.

Abass NK, Shanan ZJ, Mohammed TH, Abbas LK. Fabricated of Cu doped ZnO nanoparticles for solar cell application. Baghdad Sci. J. 2018; 15(2): 0198.

Deepak Negi, Radhe Shyam, Srinivasa Rao Nelamarri. Role of annealing temperature on structural and optical properties of MgTiO3 thin films. Mater Lett X. 2021; 11:100088.

Zainelabdin A, Zaman S, Amin G, Nur O., Deposition of well-aligned ZnO nanorods at 50◦C on metal semiconducting polymer, and copper oxides substrates and their structural and optical properties. Cryst Growth Des. 2010; 10(7): 3250–3256.

Amorin LH, Martins LD, Urbano A. Commitment between roughness and crystallite size in the vanadium oxide thin film opto-electrochemical properties.J Mater Res. 2019; 22(1): e20180245.