This is a preview and has not been published.

Human Amylin as a Novel Diagnostic Marker for Hypothyroidism in Iraqi Patients

Authors

  • Duha Khalil Ibrahim Department of Chemistry, College of Science for Women, University of Baghdad, Baghdad, Iraq.
  • layla othman Department of Chemistry, College of Science for Women, University of Baghdad, Baghdad, Iraq.

DOI:

https://doi.org/10.21123/bsj.2023.8655

Keywords:

Amylin, hypothyroidism, Thyroid Stimulating Hormone, Tetraiodothyronin, Tri iodothyronine

Abstract

Amylin is a peptide hormone that the pancreas cell secretes along with insulin.  As a neuroendocrine hormone that sends a specific signal to the brain, amylin is essential for maintaining homeostasis in the metabolism. The goal of the current study is to determine the role of Amylin as a diagnostic   marker of hypothyroidism.  The 120 samples were divided into two groups (80 patients with hypothyroidism) and the second group (40 healthy people). Amylin levels significantly increased compared to the control group in the group with hypothyroidism, according to the data (p < 0.001). Amylin levels raised in Iraqi patients with Hypothyroidism. Amylin a good diagnostic marker for Hypothyroidism with most accurately, sensitively cut off value 51.

Downloads

Download data is not yet available.

References

Khalid W, Maqbool Z, Arshad MS, Kousar S, Akram R, Siddeeg A, et al. Plant-derived functional components: prevent from various disorders by regulating the endocrine glands. Int J Food Prop. 2022; 25(1): 976–95. https://doi.org/10.1080/10942912.2022.2070643.

Taylor PN, Albrecht D, Scholz A, Gutierrez-Buey G, Lazarus JH, Dayan CM, et al. Global epidemiology of hyperthyroidism and hypothyroidism. Nat Rev Endocrinol. 2018; 14(5): 301–16. https://doi.org/10.1038/nrendo.2018.18.

Farhan LO, Taha EM, Farhan AM. A Case control study to determine Macrophage migration inhibitor, and N-telopeptides of type I bone collagen Levels in the sera of osteoporosis patients. Baghdad Sci J. 2022; 19(4): 848-854. http://dx.doi.org/10.21123/bsj.2022.19.4.0848.

Hu M, Asami C, Iwakura H, Nakajima Y, Sema R, Kikuchi T, et al. Development and preliminary validation of a machine learning system for thyroid dysfunction diagnosis based on routine laboratory tests. Commun Med. 2022; 2(1): 9. https://doi.org/10.1038/s43856-022-00071-1.

Eng L, Lam L. Thyroid function during the fetal and neonatal periods. Neoreviews. 2020; 21(1): e30–6. https://doi.org/10.1542/neo.21-1-e30.

Jose J, Vincent A, Devi D, Russal N, Joyand R, Anthraper AR. Comparative Study of Thyroid Profile In Geriatric And Non Geriatric Type 2 Dm Patients In A Tertiary Care Hospital.World J Pharm.Res.2020 ; 9 (7): 2391-2404. https://doi.org/10.20959/wjpr 20 20717995.

Farhan LO, Mehdi WA, Taha EM, Farhan AM, Mehde AA, Özacar M. Various type immobilizations of Isocitrate dehydrogenases enzyme on hyaluronic acid modified magnetic nanoparticles as stable biocatalysts. Int J Biol Macromol. 2021; 182: 217–27. https://doi.org/10.1016/j.ijbiomac.2021.04.026.

Conigliaro P, D’Antonio A, Pinto S, Chimenti MS, Triggianese P, Rotondi M, et al. Autoimmune thyroid disorders and rheumatoid arthritis: A bidirectional interplay. Autoimmun Rev. 2020; 19(6): 102529. https://doi.org/10.1016/j.autrev.2020.102529.

Gaitonde DY, Rowley KD, Sweeney LB. Hypothyroidism: an update. Am Fam Physician. 2012; 86(3): 244-51. https://doi.org/10.1080/20786204.2012.10874256.

Berta E, Lengyel I, Halmi S, Zrínyi M, Erdei A, Harangi M, et al. Hypertension in thyroid disorders. Frontiers in endocrinology. Frontiers Media SA. 2019; 10: 482. https://doi.org/10.3389/fendo.2019.00482.

Leibold N, Bain JR, Despa F. Type‐2 diabetes, pancreatic amylin and neuronal metabolic remodeling in Alzheimer’s Disease. Mol Nutr Food Res. 2023; 1(28); 2200405. https://doi.org/10.1002/mnfr.202200405.

Hay DL. Amylin. Headache J. 2017; 5(57): 896. https://doi.org/10.1111/head.13077.

Xie J, Tong Z, Shen L, Shang Y, Li Y, Lu B, et al. Amylin: new insight into pathogenesis, diagnosis, and prognosis of non-insulin-dependent diabetes-mellitus-related cardiomyopathy. Emerg Crit Care Med. 2022; 2(1): 32–8. https://doi.org/10.1097/EC9.0000000000000029.

Boyle CN, Zheng Y, Lutz TA. Mediators of Amylin Action in Metabolic Control. J Clin Med. 2022; 11(8): 2207. https://doi.org/10.3390/jcm11082207.

Ibrahim Suhad A, Zainulabdeen Jwan A, Jasim Hameed M. Levels of Arginase Isoenzymes in Sera of Iraqi Patients with Atherosclerosis and Type 2 Diabetes Mellitus. Res J Biotechnol. 2019; 14(3): 201-207.

Mathiesen DS, Lund A, Holst JJ, Knop FK, Lutz TA, Bagger JI. Therapy Of Endocrine Disease: Amylin and calcitonin–physiology and pharmacology. Eur J Endocrinol. 2022; 186(6): R93–111. https://doi.org/10.1530/EJE-21-1261.

Elizabeth G, Amylin receptor signaling in the ventral tegmental area is physiologically relevant for the control of food intake. Neuropsychopharmacol. .2013; 38(9): 1685-97. https://doi.org/10.1038/npp.2013.66.

Ascar IF, Al-A’Araji SB, Alshanon AF. Cytotoxicity and antioxidant effect of ginger gold nanoparticles on thyroid carcinoma cells. J Pharm Sci. 2019; 11(3): 1044–1051.

Alghrably M, Czaban I, Jaremko Ł, Jaremko M. Interaction of amylin species with transition metals and membranes. J Inorg Biochem. 2019; 191: 69–76. https://doi.org/10.1016/j.jinorgbio.2018.11.004.

Hameed AS, Ascar IF, Hameed AS. Serum Level of Vitamin D receptor and Genetic polymorphism in children suffering from Autism. Ann Trop Med Public Health .2021; 24(4): 546-551. https://doi.org/10.36295/ASRO.2021.24463.

Preda SA, Comanescu MC, Albulescu DM, Dascălu IT, Camen A, Cumpătă CN, et al. Correlations between periodontal indices and osteoporosis. Exp Ther Med. 2022; 23(4): 17. https://doi.org/10.3892/etm.2022.11179.

Sanyal D, Raychaudhuri M. Hypothyroidism and obesity: An intriguing link. Indian J Endocrinol Metab. 2016; 20(4): 554. https://doi.org/10.4103/2230-8210.183454.

Khaleel FM, N-Oda N, A Abed B. Disturbance of Arginase Activity and Nitric Oxide Levels in Iraqi Type 2 Diabetes Mellitus. Baghdad Sci J. 2018; 15(2): 189–91. https://doi.org/10.21123/bsj.2018.15.2.0189

Liu H, Peng D. Update on dyslipidemia in hypothyroidism: the mechanism of dyslipidemia in hypothyroidism. Endocr Connect. 2022; 11(2): 1-15. https://doi.org/10.1530/EC-21-0002.

Ejaz M, Kumar P, Thakur M, Bachani P, Naz S, Lal K, et al. Comparison of lipid profile in patients with and without subclinical hypothyroidism. Cureus. 2021; 13(8): 17301. https://doi.org/10.7759/cureus.17301.

Xu Y, Zhao Y, Xu X, Yan Q, Yang L. Serum lipid profile in relation to free thyroxine and the effect of levothyroxine treatment on lipids in patients with isolated hypothyroxinemia during pregnancy: a single-center retrospective study. Lipids Health Dis. 2022; 21(1): 1–10. https://doi.org/10.1186/s12944-022-01744-5.

Abass EAA, Abed BA, Mohsin SN. Study of Lysyl Oxidase-1 And Kidney Function In Sera of Iraqi Patients with Diabetic Nephropathy. Baghdad Sci J. 2018; 15(2): 189–161

Xu D, Zhong H. Correlation between hypothyroidism during pregnancy and glucose and lipid metabolism in pregnant women and its influence on pregnancy outcome and fetal growth and development. Front Surg. 2022; 9(3): 1-6. https://doi.org/10.3389/fsurg.2022.863286.

Walczak K, Sieminska L. Obesity and thyroid Axis. Int J Environ Res Public Health. 2021; 18(18): 9434. https://doi.org/10.3390/ijerph18189434.

Wende B, Beyer A-SL, Ruhnke N, Kaemmerer D, Sänger J, Schulz S, et al. Expression of the Calcitonin Receptor-like Receptor (CALCRL) in Normal and Neoplastic Tissues. Int J Mol Sci. 2023; 24(4): 3960. https://doi.org/10.3390/ijms24043960.

Grizzanti J, Corrigan R, Servizi S, Casadesus G. Amylin signaling in diabetes and Alzheimer’s disease: therapy or pathology? J Neurol neuromedicine. 2019; 4(1): 12. https://doi.org/10.29245/2572.942X/2019/1.1212

Downloads

Issue

Section

article