This is a preview and has not been published.

Investigation Nonlinear Properties (First and Second Hyperpolarizabilities) of The Nitro-thieno [3,2-b] thiophene -fullerene (C20) Molecule




Density functional theory, Kerr effect, Pockels’s effect, Second harmonic generation, Third harmonic generation


In this study, nonlinear optical (NLO) properties of nitro-thieno [3,2-b] thiophene-fullerene (C20) molecule was systematically investigated using density functional theory (DFT) methods at the B3LYP level with a 6-31 + G(d,p) basis set. Fullerene (electron-donor) is associated with thieno [3,2-b] thiophene (π-conjugated bridge), forming a charge-transfer framework, and nitro is a strong electron-acceptor. The dynamic properties of the molecule, including first and second hyperpolarizability, resulting from second harmonic generation β(-2ω; ω,ω), third harmonic generation γ(– 2ω; ω, ω, ω), Pockels effect β(-ω; ω,0), and Kerr effect γ(–ω; ω, 0, 0), were investigated, which are essential evaluation indexes for creating nonlinear materials. The molecule exhibits excellent nonlinear responses, where it was found that the highest linear response of the coefficients above at the wavelength 455.6 nm. Absorption spectra reveal that these molecules have infrared transparent regions and are novel nonlinear molecules. Therefore, linking nitro-thieno[3,2-b]thiophene with fullerene (C20) efficiently designs high-performance nonlinear molecules.


Download data is not yet available.


Mohbiya DR, Sekar N. Electronic structure and spectral properties of indole based fluorescent styryl dyes: Comprehensive study on linear and non-linear optical properties by DFT/TDDFT method. Comput Theor Chem. 2018; 1139(April): 90–101.

Kiven DE, Nkungli NK, Tasheh SN, Ghogomu JN. In silico screening of ethyl 4-[(E)-(2-hydroxy-4-methoxyphenyl) methyleneamino] benzoate and some of its derivatives for their NLO activities using DFT. R Soc Open Sci. 2023; 10(1): 220430.

Bibi A, Muhammad S, UrRehman S, Bibi S, Bashir S, Ayub K, et al. Chemically Modified Quinoidal Oligothiophenes for Enhanced Linear and Third-Order Nonlinear Optical Properties. ACS Omega. 2021; 6(38): 24602–24613.

Chen X, Ok KM. Metal oxyhalides: an emerging family of nonlinear optical materials. Chem Sci. 2022;13(14): 3942–3956.

Li Q, Li Z. Molecular packing: another key point for the performance of organic and polymeric optoelectronic materials. Acc Chem Res. ACS Publications; 2020; 53(4): 962–973.

Wang H-Y, Ye J-T, Qiu Y-Q, Chen F. Toward the design of inorganic–organic hybrid Ir(III) complexes containing borazine and benzene ligands with excellent second-order NLO responses: An appropriate substitution and π-conjugated extension. J Mol Liq.121081.

Rasool F, Hussain A, Yar M, Ayub K, Sajid M, Ali M, et al. Nonlinear optical response of 9,10-bis(phenylethynyl)anthracene mediated by electron donating and electron withdrawing substituents: A density functional theory approach. Mat Sci Semicond. Process. 2022;148(May): 106751.

Sulka GD. Electrochemistry of Thin Films and Nanostructured Materials. Molecules. 2023; 28(10), 4040.

Butt A. Thin-Film Coating Methods: A Successful Marriage of High-Quality and Cost-Effectiveness—A Brief Exploration. Coatings. 2022; 12(8), 1115.

Derkowska-Zielinska B, Barwiolek M, Cassagne C, Boudebs G. Nonlinear optical study of Schiff bases using Z-scan technique. J Opt Laser Technol. 2020; 124: 105968.

Pant D, Darla N, Sitha S. Roles of various bridges on intramolecular charge Transfers, dipole moments and first hyperpolarizabilities of Donor-Bridge-Acceptor types of organic Chromophores: Theoretical assessment using Two-State model. Comput. Theor. Chem. 2022;1209: 113583.

Li H-PP, Bi Z-TT, Xu R-FF, Han K, Li M-XX, Shen X-PP, et al. Theoretical study on electronic polarizability and second hyperpolarizability of hexagonal graphene quantum dots: Effects of size, substituent, and frequency. Carbon. 2017;122: 756–760.

Singh P, Kumar A, Reena, Gupta A, Patil PS, Prabhu S, et al. Vibrational spectroscopic characterization, electronic absorption, optical nonlinearity computation and terahertz investigation of (2E) 3-(4-ethoxyphenyl)-1-(3-bromophenyl) prop-2-en-1-one for NLO device fabrication. J Mol Struct. 2019; 1198: 126909.

Bahrani F,.Hameed R, Resan S, M Al-anber M. Impact of Torsion Angles to Tune Efficient Dye-Sensitized Solar Cell/Donor-π-Acceptor Model Containing Triphenylamine: DFT/TD-DFT Study. Acta Phys Pol A. 2022; 141(6): 561–568.

Bulik IW, Zaleśny R, Bartkowiak W, Luis JM, Kirtman B, Scuseria GE, et al. Performance of density functional theory in computing nonresonant vibrational (hyper) polarizabilities. J Comput Chem. 2013; 34(20): 1775–1784.

Resan S, Hameed R, Al-Hilo A, Al-Anber M. The impact of torsional angles to tune the nonlinear optical response of chalcone molecule: Quantum computational study. Rev Cub Fis. 2020; 37(2): 95–100.

Kubba RM, Mohammed MA, Ahamed LS. DFT calculations and experimental study to inhibit carbon steel corrosion in saline solution by quinoline-2-one derivative. Baghdad Sci J. 2021; 18(1): 113–123.

Samanta PK, Misra R. Intramolecular charge transfer for optical applications. Appl. Phys. 2023;133(2).

Ahn M, Kim MJ, Cho DW, Wee KR. Electron Push-Pull Effects on Intramolecular Charge Transfer in Perylene-Based Donor-Acceptor Compounds. J. Org. Chem. 2021;86(1): 403–413.

Huang Y, Zhou W, Li X, Jiang L, Song Y. Highly broadband NLO response of acceptor-donor-acceptor materials with a planar conformation. Mat Adv. 2021; 2(6): 2097–2103.

Shinde SS, Sreenath MC, Chitrambalam S, Joe IH, Sekar N. Spectroscopic, DFT and Z-scan approach to study linear and nonlinear optical properties of Disperse Red 277. Opt .Mater. 2020; 99(August): 109536.

Al-Anber MJ, Al-Mowali AH, Ali AM. Theoretical semiempirical study of the nitrone (anticancer drug) interaction with fullerene C60 (as delivery). Acta Phys Pol A .2014; 126(3): 845–848.

Al-anber MJ. Theoretical Semi-empirical Study of the Glycine Molecule Interaction with Fullerene C60. Electron J Chem. 2014; 6(3): 156–160.

24. Frisch M J, Trucks Gary, Schlegel H B, Scuseria G E, Robb Michael A, Cheeseman James R, et a ‘Gaussian 09, Revision A. 02. Gaussian Inc, Wallingford, CT.’ See also: URL:;2009.

Halls MD, Velkovski J, Schlegel HB. Harmonic frequency scaling factors for Hartree-Fock, S-VWN, B-LYP, B3-LYP, B3-PW91 and MP2 with the Sadlej pVTZ electric property basis set. Theor Chem Acc. 2001; 105(6): 413–421.

Mathew E, Salian V V., Hubert Joe I, Narayana B, Joe IH, Narayana B. Third-order nonlinear optical studies of two novel chalcone derivatives using Z-scan technique and DFT method. J Opt Laser Technol. 2019; 120: 105697.

Khalid M, Hussain R, Hussain A, Ali B, Jaleel F, Imran M, et al. Electron donor and acceptor influence on the nonlinear optical response of diacetylene-functionalized organic materials (DFOMs): Density functional theory calculations. Molecules . 2019;24(11).

Kubba RM, Kadhim MM. Reactivity of O-Drug Bond in some Suggested Voltarine Carriers: Semiempirical and ab Initio Methods. Baghdad Sci J. 2021; 18(4): 1249.

Günay N, Tamer Ö, Avci D, Tarcan E, Atalay Y. Molecular modelling, spectroscopic characterization and nonlinear optical analysis on N-Acetyl-DL-methionine. Rev Mex de Fis. 2020; 66(6): 749–760.

Begam S, Deepa M, Ummal M, Hu J, Guin M. Effect of fluorination on bandgap, first and second order hyperpolarizabilities in lithium substituted adamantane: A time dependent density functional theory. Chem Phys Lett. 2019; 715: 310–316.

Gorman CB, Marder SR. Effect of Molecular Polarization on Bond-Length Alternation, Linear Polarizability, First and Second Hyperpolarizability in Donor-Acceptor Polyenes as a Function of Chain Length. Chem Mater. 1995; 7(1): 215–220.

Li S, He M, Jin X, Geng W, Li C, Li X, et al. Extending the Stokes Shifts of Donor–Acceptor Fluorophores by Regulating the Donor Configuration for In Vivo Three-Photon Fluorescence Imaging. Chem Mater. 2022; 34(13): 5999–6008.

Mbarak H, Kodeary AK, Hamidi SM, Mohajarani E, Zaatar Y. Control of nonlinear refractive index of AuNPs doped with nematic liquid crystal under external electric field. Optik. 2019; 198: 163299.