This is a preview and has not been published.

Antimicrobial Activity of Silver Nanoparticles on Pathogenic Bacteria




Antimicrobial activity; Nosocomial infection; Pathogenic Bacteria; Resistant bacteria; Silver nanoparticle


Nosocomial infection is acquired contamination of hospitals and health care units caused by multidrug resistant bacteria. Currently, bacterial resistance to antimicrobial medication represents a complicated public health problem. Recent studies on the antimicrobial activity of silver nanoparticles (AgNPs) attracted researchers worldwide to focus on the safe synthesis of AgNPs as antimicrobial agents against multidrug resistant bacteria. The antimicrobial efficacy of AgNPs on pathogenic bacteria isolated from clinical cases of acquired hospital infection was targeted in this project. Fifty specimens of stool were collected through private laboratories in Baghdad from patients who suffered diarrheal symptoms. Bacterial isolation, identification, and characterization via culturing on MacConkey agar, Salmonella shigella agar, and IMVic analysis were done besides, using polymerase chain reaction (PCR) through amplifying inf B gene for molecular characterization. The obtained isolates were tested for antimicrobial sensitivity via disk diffusion assay against; Gentamycin, Amoxicillin, Tetracycline, Ceftriaxone and a suspension of silver nanoparticles (1mM AgNo3 reduced by 1% tri-sodium citrate). Results of isolation and IMVic showed the obtained isolates were Klebsiella spp., Enterobacter spp., Citrobacter spp., and PCR assay confirmed their pathogenicity. Disc diffusion assay showed the sensitivity of the isolates (mm); Gentamycin (24.94 ± 0.1), Amoxicillin (2.11 ± 0.13), Tetracycline (12.15 ± 0.1), Ceftriaxone (12.35 ± 0.1). Whereas, all isolates are sensitive to AgNPs (24.12 ± 0.3). This result of the antimicrobial effect of AgNPs on nosocomial infection promises for developing AgNPs solution as a product used in the sterilization of furniture, floors and hospital water cycles


Download data is not yet available.


Kailasa SK, Park TJ, Rohit JV, Koduru JR. Antimicrobial activity of silver nanoparticles. InNanoparticles in pharmacotherapy 2019 Jan 1 (pp. 461-484). William Andrew Publishing.

Bonadonna L, Briancesco R, Coccia A M. Analysis of Microorganisms in hospital environments and potential risks. In Indoor Air Quality in Healthcare Facilities. Springer. Cham 2017: p. 53-62.

Inder D, Kumar P. The scope of nano-silver in medicine: A systematic review. Int J Pharmacogn Chin Med. 2018;2:000134.

Nicolae-Maranciuc A, Chicea D, Maria Chicea L. Ag Nanoparticles for Biomedical Applications—Synthesis and Characterization. Int J Mol Sci. 2022; 23(10): 5778.

Pasparakis G. Recent developments in the use of gold and silver nanoparticles in biomedicine. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2022 Sep; 14(5): e1817. Epub 2022 Jul 1

Tashpulatov J, Zaynitdinova L, Juraeva R, Kukanova S, Lazutin N, Mavjudova A, et al. Screening of the Collection Cultures for Biosynthesis of Copper Nanoparticles. J Shanghai Jiaotong Univ (Sci). 2021; 17(8): 97-104.

Pareek V, Gupta R, Panwar J. Do physico-chemical properties of silver nanoparticles decide their interaction with biological media and bactericidal action. Mater Sci Eng C. 2018; 90: 739-749.

Chahar V, Sharma B, Shukla G, Srivastava A, Bhatnagar A. Study of antimicrobial activity of silver nanoparticles synthesized using green and chemical approach .Colloids Surf A Physicochem Eng Asp. 2018; 554: 149-55.

Tincho M B, Yimta Y D, Adekiya T A, Aruleba R T, Ayawei N, Boyom F F, et al. Biosynthesis of Silver Nanoparticles Using Bersama engleriana Fruits Extracts and Their Potential Inhibitory Effect on Resistant Bacteria. crystals. 2022; 12(7): 1-20.; .

Güzel R, Gülbahar E. Synthesis of silver nanoparticles. Intech Open. 2018.

Sánchez-López E, Gomes D, Esteruelas G, Bonilla L, Laura Lopez-Machado A, Galindo R, et al. Metal-based nanoparticles as antimicrobial agents: an overview. Nanomaterials. 2020; 10(2): 292.

Gurunathan S. Rapid biological synthesis of silver nanoparticles and their enhanced antibacterial effects against Escherichia fergusonii and Streptococcus mutans. Arab J Chem. 2019; 12(2): 168-180.

Souto E B, Ribeiro A F, Ferreira M I, Teixeira M C, Shimojo A A M, Soriano J L, et al. New nanotechnologies for the treatment and repair of skin burns infections. Int J Mol Sci 2020; 21(2): 393.

Lupindu, Athumani Msalale. Isolation and characterization of Escherichia coli from animals, humans, and environment. Escherichia coli-Recent Advances on Physiology, Pathogenesis and Biotechnological Applications, Samie A (ed.). London, United Kingdom: Intech Open Limited. 2017: 187-206.

Hedegaard J, Steffensen Søren A, Nørskov-Lauritsen N, Mortensen K K, Sperling-Petersen H U. Identification of Enterobacteriaceae by partial equencing of the gene encoding translation initiation factor 2. Int J Syst Evol Microbiol. 1999; 49(4): 1531-1538. .

Quintero-Quiroz C, Acevedo N, Zapata-Giraldo J, Botero LE, Quintero J, Zárate-Triviño D, Saldarriaga J, Pérez VZ. Optimization of silver nanoparticle synthesis by chemical reduction and evaluation of its antimicrobial and toxic activity. Biomater Res. 2019 Dec; 23(1): 1-5.

Shaimaa Obaid Hasson, Sumod Abdul kadhem Salman, Shurooq Falah Hassan, Shatha Mohammed Abbas. Antimicrobial Effect of Eco-Friendly Silver Nanoparticles Synthesis by Iraqi Date Palm (Phoenix dactylifera) on Gram-Negative Biofilm-Forming Bacteria. Baghdad Sci J. 2021; 18(4): 1149-1156.

Tolera M, Abate D, Dheresa M, Marami D. Bacterial nosocomial infections and antimicrobial susceptibility pattern among patients admitted at Hiwot Fana Specialized University Hospital, Eastern Ethiopia. Advan Med. 2018.

Ali Aboud Shareef, Zainab Alag Hassan, Majid Ahmed Kadhim, Abdulameer Abdullah Al-Mussawi. Antibacterial Activity of Silver Nanoparticles Synthesized byAqueous Extract of Carthamus oxycantha M.Bieb.Against AntibioticsResistant Bacteria. Baghdad Sci J. 2022; 19(3): 460-468.

Nouri F, Karami P, Zarei O, Kosari F, Alikhani MY, Zandkarimi E, et al. Prevalence of common nosocomial infections and evaluation of antibiotic resistance patterns in patients with secondary infections in Hamadan, Iran. Infect Drug Resist. 2020 Jul 15:2365-74.

Mimi S, Taeho O, Seulgi B. Antibiofilm activity of silver nanoparticles against biofilm forming Staphylococcus pseudintermedius isolated from dogs with otitis externa. Vet Med Sci. 2021 Sep; 7(5): 1551–1557.

Martin O, Drozd J, Bratka P, Whitley A, Mohlenikova Duchonova B, Gürlich R. A new silver dressing, Stop Bac, used in the prevention of surgical site infections. Int Wound J. 2022; 19(1): 29–35.