This is a preview and has not been published.

Evaluating Coll2-1NO2 Level in Pre- and Post-menopausal Iraqi Women with Osteoarthritis

Authors

  • Noor Basil Ghanim Department of Chemistry, College of Science for Women, University of Baghdad, Baghdad, Iraq. https://orcid.org/0009-0009-4158-6128
  • Bushra Faris Hasan Department of Chemistry, College of Science for Women, University of Baghdad, Baghdad, Iraq.

DOI:

https://doi.org/10.21123/bsj.2024.8808

Keywords:

Coll2-1NO2, C-reactive protein, FSH, lipid profile, osteoarthritis

Abstract

Osteoarthritis (OA) is not an autoimmune but a chronic inflammatory disease affecting the joints of humans due to mechanical stress mostly in the knees and the hip. In OA a modification of the cartilage is encountered causing a pain in the joints upon movement. Coll2-1NO2 is a specific sequence of amino acids produced from the degradation of type II collagen, which is abundantly found in the cartilage, followed by a nitration in the tyrosine residue as a consequence of stress-inflammatory events. In this study, Coll2-1NO2 is used as a biomarker of OA to predict the inflammatory stress condition as well as the cartilage degradation in pre- and post-menopausal women. The results showed a significant increase of serum Coll2-1NO2 in pre- and post-menopausal women with OA compared to pre- and post-menopausal health women, at similar body mass index category (overweight). Pearson’s correlation analysis showed non-significant association between Coll2-1NO2 and other studied parameters. Moreover, ROC analysis showed a very excellent sensitivity of Coll2-1NO2 as a prognostic biomarker for OA disease in pre- and post-menopausal women

Downloads

Download data is not yet available.

References

Mutar H S, Hasan B F, Muhi S A. Study the Level of Cartilage Acidic protein (CRTAC1) in Serum of Iraqi Patients with osteoarthritis, Neuro Quant. 2022; 20(7): 153-158. https://doi.org/10.14704/nq.2022.20.7.NQ33018

Kraus V B, Blanco F J, Englund M, Karsdal M A, Lohmander L S. Call for standardized definitions of osteoarthritis and risk stratification for clinical trials and clinical use. Osteoarthr Cartil. 2015; 23(8): 1233-1241. https://doi.org/10.1016/j.joca.2015.03.036

Allen K D, Thoma L M, Golightly Y M. Epidemiology of osteoarthritis. Osteoarthr Cartil. 2022; 30(2): 184-195. https://doi.org/10.1016/j.joca.2021.04.020

Abramoff B, Caldera F E. Osteoarthritis: pathology, diagnosis, and treatment options. Med Clin. 2020; 104(2): 293-311. https://doi.org/10.1016/j.mcna.2019.10.007

Musumeci G, Aiello F C, Szychlinska M A, Di Rosa M, Castrogiovanni P, Mobasheri, A, et al. Osteoarthritis in the XXIst century: risk factors and behaviours that influence disease onset and progression. Int J Mol Sci. 2015; 16(3): 6093-6112. https://doi.org/10.3390/ijms16036093

Mobasheri A, Batt M. An update on the pathophysiology of osteoarthritis. Ann Phys Rehabil. 2016; 59(5-6): 333-339. https://doi.org/10.1016/j.rehab.2016.07.004

Slavich G M, Sacher J. Stress, sex hormones, inflammation, and major depressive disorder: Extending Social Signal Transduction Theory of Depression to account for sex differences in mood disorders. Psychopharmacol. 2019; 236(10): 3063-3079. https://doi.org/10.1007/s00213-019-05326-9

Hughes-Fulford, M. Signal transduction and mechanical stress. Science's STKE. 2004; 2004(249): 1-8. https://doi.org/10.1126/stke.2492004re12

Taleb-Belkadi O, Chaib H, Zemour L, Fatah A, Chafi B, Mekki, K. Lipid profile, inflammation, and oxidative status in peri-and postmenopausal women. Gynecol Endocrinol. 2016; 32(12): 982-985. https://doi.org/10.1080/09513590.2016.1214257

Buckwalter J A, Mankin H J, Grodzinsky A J. Articular cartilage and osteoarthritis. Instructional Course Lectures-American Academy of Orthopaedic Surgeons. 2005; 54: 465-480.

Malfait A M, Miller R E, Miller R J. Basic mechanisms of pain in osteoarthritis: experimental observations and new perspectives. Rheum Dis Clin. 2021; 47(2): 165-180. https://doi.org/10.1016/j.rdc.2020.12.002

Khajehsaeid H, Abdollahpour Z. Progressive deformation-induced degradation of knee articular cartilage and osteoarthritis. J Biomech. 2020; 111(109995): 1-8. https://doi.org/10.1016/j.jbiomech.2020.109995

Li Y, Wei X, Zhou J, Wei L. The age-related changes in cartilage and osteoarthritis. Biomed Res Int. 2013; 2013: 1-13. https://doi.org/10.1155/2013/916530

Hick A C, Malaise M, Loeuille D, Conrozier T, Maugars Y, Pelousse F, et al. Cartilage Biomarkers Coll2-1 and Coll2-1NO2 Are Associated with Knee OA MRI Features and Are Helpful in Identifying Patients at Risk of Disease Worsening. Cartilage. 2021; 13(1_suppl): 1637s-1647s. https://doi.org/10.1177%2F19476035211021892

Lambert C, Borderie D, Dubuc J-E, Rannou F, Henrotin Y. Type II collagen peptide Coll2-1 is an actor of synovitis. Osteoarth cartil. 2019; 27(11): 1680-1691. https://doi.org/10.1016/j.joca.2019.07.009

Hick A-C, Fonck M, Costes B, Cobraiville E, Pirson, S, Garcia L, et al. Serum levels of Coll2-1, a specific biomarker of cartilage degradation, are not affected by sampling conditions, circadian rhythm, and seasonality. Cartilage. 2021; 13(1_suppl): 540S-549S. https://doi.org/10.1177/1947603519878489

Henrotin Y, Costes B, Malaise M, Loeuille D, Conrozier T, Maugars Y, et al. S-Coll2-1 and s-Coll2-1NO2 sont des marqueurs de la sévérité et de la progression de l’arthrose du genou : résultats de l’étude PRODIGE. Revue du Rhumatisme. 2020; 87(supplement 1): A53. https://doi.org/10.1016/j.rhum.2020.10.083

Mohammed H A, Ahmed Z A, Alrawi A A O. DC-SIGN Receptor Level in Rheumatoid Arthritis Patients in Baghdad; Serological study. Baghdad Sci J. 2022; 19(6): 1212. https://doi.org/10.21123/bsj.2022.6559

Mutar H S, Hasan B F, Muhi S A. Study the Level of Collagen2-1NO2 (Coll2-1NO2) in Serum of Iraqi Patients with Osteoarthritis. Pak J Med. 2022; 16(06): 464-464. https://doi.org/10.53350/pjmhs22166464

Liu Y, Zhang M, Kong D, Wang Y, Li J, Liu W, et al. High follicle-stimulating hormone levels accelerate cartilage damage of knee osteoarthritis in postmenopausal women through the PI3K/AKT/NF-κB pathway. FEBS Open Bio. 2020; 10(10): 2235-2245. https://doi.org/10.1002/2211-5463.12975

Xu J, Xiao J, Shi Z J. Correlation between age-related serum follicle stimulating hormone levels and osteoarthritis in postmenopausal women. Biomed Res. 2017; 28(13): 5772-5775.

Santos-Baez L S, Ginsberg H N. Hypertriglyceridemia—causes, significance, and approaches to therapy. Front Endocrinol. 2020; 11(616): 1-7. https://doi.org/10.3389/fendo.2020.00616

Taay Y, Mohammed M, Abbas R, Ayad A, Mahdi M. Determination of some biochemical parameters in sera of normotensive and hypertensive obese female in Baghdad. J Phys: Conf Ser. 2021; 1853: 012037, IOP Publishing. https://doi.org/10.1088/1742-6596/1853/1/012037

Hamza M A, Al Tamer Y Y, Al habib O A. Modification of Irisin Level in Overweight/Obese Women during Pregnancy and Its Association with Some Metabolic Risk Factors. Baghdad Sci J. 2020; 17(3(Suppl.)): 1124. https://doi.org/10.21123/bsj.2020.17.3

Kadium, T E, Alrubaie, A, Ghanim, S A M. The Link between Serum Omentin Level and Insulin Resistance Biomarkers, Lipid Profile, and Atherogenic Indices in Iraqi Obese Patients, Baghdad Sci J. 2023; 20(1): 0074. https://doi.org/10.21123/bsj.2022.6535

Peng X, Wu H. Inflammatory links between hypertriglyceridemia and atherogenesis. Curr Atheroscler Rep. 2022; 24(5): 297-306. https://doi.org/10.1007/s11883-022-01006-w

Downloads

Issue

Section

article