Fractographic Analysis of Tensile Failures of Zirconia Epoxy Nanocomposites

Main Article Content

Muhannad M. Abd
S. M. Alduwaib

Abstract

This work characterizes the fractographic features of the neat epoxy and ZrO2 epoxy nanocomposites. All samples were subjected to a tensile test to determine the tensile strength and tensile modulus. SEM images were used to study the morphology of the fractured surface. The fractographic of the fracture surfaces were studied by microstructure analysis program (j-images) to specify the effect of ZrO2 nanoparticles on tensile performance and failure mechanism for ZrO2 epoxy nanocomposites. The tensile test results show that the addition of ZrO2 nanoparticles (2, 4, 6, 8, and 10 vol.%) to the epoxy matrix leads to increase the tensile strength about 40% for optimal content of ZrO2 nanoparticles at 4 vol.%, tensile modules of ZrO2 epoxy nanocomposites increased about 200% for optimal content of ZrO2 nanoparticles at 4 vol.%. SEM images show that the patterns of fractured surfaces of ZrO2 epoxy nanocomposites are different from the pattern of the neat epoxy. The fracture roughness of ZrO2 epoxy nanocomposites increased with the increases of the percentages of ZrO2 nanoparticles, where the increment of fracture roughness about 30% for optimal content of ZrO2 nanoparticles at 4 vol.% can be indicator for the improvement of mechanical properties (tensile strength and modules).

Article Details

How to Cite
1.
Fractographic Analysis of Tensile Failures of Zirconia Epoxy Nanocomposites. Baghdad Sci.J [Internet]. 2022 Apr. 1 [cited 2024 Mar. 29];19(2):0430. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/5485
Section
article

How to Cite

1.
Fractographic Analysis of Tensile Failures of Zirconia Epoxy Nanocomposites. Baghdad Sci.J [Internet]. 2022 Apr. 1 [cited 2024 Mar. 29];19(2):0430. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/5485

References

Domun N, Hadavinia H, Zhang T, Sainsbury T, Liaghata G H, Vahida S. Improving the Fracture Toughness and the Strength of Epoxy using Nanomaterials – a review of the current status. Nanoscale. 2015;7: 10294–329.

Bajpai A, Carlotti S. The Effect of Hybridized Carbon Nanotubes, Silica Nanoparticles, and Core-Shell Rubber on Tensile. Fracture Mechanics and Electrical Properties of Epoxy Nanocomposites. Nanomater. 2019; 9(7): 1057.

Wang Z , Liu F , Liang W , Zhou L . Study on Tensile Properties of Nanoreinforced Epoxy Polymer: Macroscopic Experiments and Nanoscale FEM Simulation Prediction. Adv Mater Sci Eng. 2013; Article ID 392450: 8

Fernández-Garcia M, Rodriguez J A. Encyclopedia of Inorganic and Bioinorganic Chemistry. Metal Oxide Nanoparticles. 2011.

Agrawal R M, Charpe S D, Raghuwanshi F C, Lamdhade G T. Synthesis and Characterization of Magnesium oxide Nanoparticles with 1:1 molar ratio via Liquid-Phase Method. Int J Appl Innov Eng Manage. 2015; 4(2): 141-45.

Bashar M, Mertiny P, Sundararaj U. Effect of Nanocomposite Structures on Fracture Behavior of Epoxy-Clay Nanocomposites Prepared by Different Dispersion Methods. J Nanomater. 2014; 312813: 1-12.

Marouf B T, Mai Yiu-Wing, Bagheri R, Pearson R A. Toughening of Epoxy Nanocomposites: Nano and Hybrid Effects. Polym Rev . 2016; 56(1): 70–112.

Mustafaa A A, Matinlinnab J P, Choib A H, Razakc AAA. Fracture Strength and Fractographic Analysis of Zirconia Copings Treated with Four Experimental Silane Primers. J Adhes Sci Technol. 2013; 27(1): 68–80.

Abbas Z A, Aleabi S H. Studying some of Mechanical Properties (tensile, impact, hardness) and Thermal Conductivity of Polymer Blend Reinforce by Magnesium Oxide. AIP Conf Proc. 2019; 2123, 020036.

Domun N, Paton K R, Hadavinia H, Sainsbury T, Zhang T, Hibaaq Mohamud. Enhancement of Fracture Toughness of Epoxy Nanocomposites by Combining Nanotubes and Nanosheets as Fillers. Mater 2017; 10: 1179.

Abd M M, Salih S A, Baseem S M, Jasim A N, Omer M A. Tensile properties of Nickel Epoxy Nanocomposites Prepared by Combination Ultrasonication and Shear Mixing Methods. Mater Today: Proc. 2020;20(4): 448-51

Baller J, Becker N, Ziehmer M, Thomassey M, Zielinski B, Müller U, et al. Interactions Between Silica Nanoparticles and an Epoxy Resin Before and During Network Formation. Polymer. 2009; 50: 3211–19.

Kumara M S, Raghavendraa K, Venkataswamya M A, Ramachandrab H V. Fractographic Analysis of Tensile Failures of Aerospace Grade Composites. Mater. Res. 2012; 15(6): 990-97.

Karthikeyan G, Jinu G R. Tensile Behaviour and Fractography Analysis of LM6/ZrO2 Composites. Materiali in tehnologije/Materials and technology.2017; 51 (3): 549–53.

Abd M M, Jaffer H I, Al-Ajaj E A. Comparison Study of Some Mechanical Properties of Micro and Nano Silica EP Composites. Iraqi J Phys. 2012; 10(18): 62-8.

Zhang L, Liu T, Wang B, Jia P. Fabrication and Performance of Nanocomposites Containing Zirconia Particles. IOP Conf Series: Mater Sci Eng. 2018 ;( 012053):381-386.

Dorigato A, Pegoretti A, Bondioli F, Messori M. Improving Epoxy Adhesives with Zirconia Nanoparticles. Compos. Interfaces. 2010; 17: 873–92.

Mirabedini S M, Behzadnasab M, Kabiri K. Effect of Various Combinations of Zirconia and Organoclay Nanoparticles on Mechanical and Thermal Properties of an Epoxy Nanocomposite Coating. Compos Part A Appl Sci Manuf. 2012; 43: 2095–106.

Medina R, Haupert F, Schlarb A K. Improvement of Tensile Properties and Toughness of an Epoxy Resin by Nanozirconium-Dioxide Reinforcement. J Mater Sci. 2008; 43: 3245–52.

Kooshki M M, Jalali-Arani A. High Performance Graphene Oxide/Epoxy Nanocomposites Fabricated Through the Solvent Exchange Method. Polym Compos. 2018; 39(S4): E2497-505.

Bajpai A, Alapati A K, Klingler A, Wetzel B. Tensile Properties, Fracture Mechanics Properties and Toughening Mechanisms of Epoxy Systems Modified with Soft Block Copolymers, Rigid TiO2 Nanoparticles and Their Hybrids. J Compos Sci. 2018; 2: 72-89.

Garg A C, Mai Y-W. Failure Mechanisms in Toughened Epoxy Resins A Review. Compos Sci Technol. 1988; 31: 179-223.

Wetzel B, Rosso P, Haupert F, Friedrich K. Epoxy Nanocomposites – Fracture and Toughening Mechanisms. Eng Fract Mech. 2006; 73: 2375–98.

Atif R, Inam F. Fractography Analysis with Topographical Features of Multi-Layer Graphene Reinforced Epoxy Nanocomposites. Graphene. 2016; 5: 166-77.

Amar C G, Yiu-Wing M. Failure Mechanisms in Toughened Epoxy Resins-A Review. Compos Sci and Tech.1988; 31: 179-223.

Salimian S, Malfait W J, Zadhoush A, Talebi Z, Naeimirad M. Fabrication and Evaluation of Silica Aerogel-Epoxy Nanocomposites. Fracture and Toughening Mechanisms. Theor. Appl. Fract. Mech. 2018;97: 156-164

Msekh M A, Cuong N H, Zi G, Areias P, Zhuang X, Rabczuk T. Fracture Properties Prediction of Clay/Epoxy Nanocomposites with Interphase Zones using a Phase Field Model. Eng Fract Mech. 2018;188: 287-99

Ladania R B, Bhasina M, Wub S, Ravindrana A R, Ghorbania K, Kinlochd A J, et al. Fracture and Fatigue Behaviour of Epoxy Nanocomposites Containing 1-D and 2-D Nanoscale Carbon Fillers. Eng. Fract. Mech. 2018; 203: 102-14.

Similar Articles

You may also start an advanced similarity search for this article.