•  
  •  
 

Abstract

Metal ferrite nanomaterials have emerged as promising materials for gas sensor fabrication due to their high surface area, which provides a large number of adsorption sites for gas molecules. In this research, a zinc ferrite nanoparticle-based gas sensor was prepared using the solid-state reaction method to achieve high sensitivity and a fast response time. The powder zinc ferrite was annealed at different temperatures within the range (500-700) °C for six hours. The optimum temperature for synthesis was 675°C. The structural properties of the prepared compound were studied using X-ray diffraction. The results showed that the compound crystallizes in a cubic crystal structure and belongs to the space group Fd3m. The lattice constant was a = 8.3856 Å . The theoretical density of ZnFe2O4 has been calculated. The average crystallite size of the ZnFe2O4 compound was calculated using Scherrer's formula. The average crystallite size was 29.5 nm. The morphology of the ZnFe2O4 nanoparticles was observed by scanning electron microscopy. The electrical resistance variations of the ZnFe2O4 compound were studied as a function of temperature. The electrical resistance values decreased with increasing temperature, indicating semiconducting behavior. The sensing properties of ZnFe2O4-based sensors were studied. The sensing results showed that the compound is a good sensor for ethanol vapor, where the response and recovery times were 10.115 s and 81.351 s at an operating temperature of 275 °C for a 100 ppm concentration of ethanol. For acetone vapor, the response and recovery times were 10.978 and 102.543 s at an operating temperature of 300 °C for a 100 ppm concentration. Findings indicate that the gas sensor based on zinc ferrite nanoparticles exhibited a high sensitivity and fast response time to ethanol vapor at a relatively low operating temperature 275 °C. These findings suggest future work on the nanostructure of zinc ferrite for its potential use in gas sensing applications.

Keywords

Average crystallite size, Gas sensor, Response and recovery times, Sensitivity, Zinc ferrite

Subject Area

Physics

Article Type

Article

First Page

1260

Last Page

1270

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Share

COinS