•  
  •  
 

Abstract

Let Hbe an infinite dimensional separable complex Hilbert space and let Tє B(H), where B(H) is the Banach algebra of all bounded linear operators on H. In this paper we prove the following results. If T є B(H) is a θ- operator, then 1. T * is a hypercyclic operator if and only if σ(Τ|_M) ∩D ≠ ф and σ(Τ|_M) ∩(C\D) ≠ ф for every hyperinvariant subspace M of T. 2. If T is a pure, then T* is a countably hypercyclic operator if and only if σ(Τ|_M) ∩(C\D) ≠ ф and σ(Τ) ∩D ≠ ф for every hyperinvariant subspace M of T. 3. T* has a bounded set with dense orbit if and only if for every hyperinvariant subspace M of Τ, σ(Τ_M)∩(C\D)≠ф.

Article Type

Article

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Share

COinS