A Generalization of t-Practical Numbers

Main Article Content

Saad abood Baddai
https://orcid.org/0000-0001-7943-6955

Abstract

This paper generalizes and improves the results of Margenstren, by proving that the number of -practical numbers  which is defined by   has a lower bound in terms of . This bound is more sharper than Mangenstern bound when  Further general results are given for the existence of -practical numbers, by proving that the interval contains a -practical for all

Article Details

How to Cite
1.
A Generalization of t-Practical Numbers. Baghdad Sci.J [Internet]. 2020 Dec. 1 [cited 2025 Jan. 20];17(4):1250. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/4195
Section
article

How to Cite

1.
A Generalization of t-Practical Numbers. Baghdad Sci.J [Internet]. 2020 Dec. 1 [cited 2025 Jan. 20];17(4):1250. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/4195

References

Margenstren. M. Les NombrsPractiques; Theorie, Observations et Conjectures. JNT, 37, 1991; 1-36.

Nicholas S, Lola Th.A Generalization of the Practical Numbers", IJNT, 14(05) 2018; 1487-1503.

Leonetti P, Sanna C.Practical Numbers Among the Binomial Coefficients.2019 (to appear).

Wang LY, Sun ZW. On practical numbers of some special forms. arXiv :1809.01532. 11 Jul 2019 .

Hausman M, Shapiro HN. On practical numbers. COMMUN PUR APPL MATH. 1984 Sep; 37(5):705-13.

Saias E.Entiersa^' diviseurs denses 1. JNT, 62 1997; 163-191.

Weingartner A.Practical Numbers and Distribution of Divisors.Q. J. Math, 66 2015; 743-758.

Robinson D. F.Egyptian Fraction Via Greek Number Theory", The New Zeal. Math. Magazine. 16 〖N_2〗^0 1979; 47-52.