تقنية تقليل البيانات القائمة على الضغط لشبكات أجهزة استشعار إنترنت الأشياء

محتوى المقالة الرئيسي

Suha Abdulhussein Abdulzahra
Ali Kadhum M. Al-Qurabat
http://orcid.org/0000-0002-8522-290X
Ali Kadhum Idrees

الملخص

في شبكات أجهزة استشعار إنترنت الأشياء ، يعد توفير الطاقة أمرًا مهمًا جدًا نظرًا لأن عقد أجهزة استشعار إنترنت الأشياء تعمل ببطاريتها المحدودة. يعد نقل البيانات مكلفًا للغاية في عقد أجهزة استشعار إنترنت الأشياء ويهدر معظم الطاقة ، في حين أن استهلاك الطاقة أقل بكثير بالنسبة لمعالجة البيانات. هناك العديد من التقنيات والمفاهيم التي تعنى بتوفير الطاقة ، وهي مخصصة في الغالب لتقليل نقل البيانات. لذلك ، يمكننا الحفاظ على كمية كبيرة من الطاقة مع تقليل عمليات نقل البيانات في شبكات مستشعر إنترنت الأشياء. في هذا البحث ، اقترحنا طريقة تقليل البيانات القائمة على الضغط (CBDR) والتي تعمل في مستوى عقد أجهزة استشعار إنترنت الأشياء. يتضمن CBDR مرحلتين للضغط ، مرحلة التكميم باستخدام طريقة SAX والتي تقلل النطاق الديناميكي لقراءات بيانات المستشعر ، بعد ذلك ضغط LZW بدون خسارة لضغط مخرجات المرحلة الاولى. يؤدي تكميم قراءات البيانات لعقد المستشعر إلى حجم ابجدية الـ SAX إلى تقليل القراءات ، مع الاستفادة من أفضل أحجام الضغط ، مما يؤدي إلى تحقيق ضغط أكبر في LZW. نقترح أيضًا تحسينًا آخر لطريقة CBDR وهو إضافة ناقل حركة ديناميكي (DT-CBDR) لتقليل إجمالي عدد البيانات المرسلة إلى البوابة والمعالجة المطلوبة. يتم استخدام محاكي OMNeT ++ جنبًا إلى جنب مع البيانات الحسية الحقيقية التي تم جمعها في Intel Lab لإظهار أداء الطريقة المقترحة. توضح تجارب المحاكاة أن تقنية CBDR المقترحة تقدم أداء أفضل من التقنيات الأخرى في الأدبيات

تفاصيل المقالة

كيفية الاقتباس
1.
تقنية تقليل البيانات القائمة على الضغط لشبكات أجهزة استشعار إنترنت الأشياء. Baghdad Sci.J [انترنت]. 10 مارس، 2021 [وثق 20 مايو، 2024];18(1):0184. موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/5069
القسم
article

كيفية الاقتباس

1.
تقنية تقليل البيانات القائمة على الضغط لشبكات أجهزة استشعار إنترنت الأشياء. Baghdad Sci.J [انترنت]. 10 مارس، 2021 [وثق 20 مايو، 2024];18(1):0184. موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/5069

المراجع

Al-Qurabat AK, Idrees AK. Data gathering and aggregation with selective transmission technique to optimize the lifetime of Internet of Things networks. INT J COMMUN SYST. 2020; 33(11); https://doi.org/10.1002/dac.4408.

Al-Qurabat AK, Jaoude CA, Idrees AK. Two Tier Data Reduction Technique for Reducing Data Transmission in IoT Sensors. In2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC) 2019 Jun 24 (pp. 168-173). IEEE.

Xu G, Shi Y, Sun X, Shen W. Internet of Things in Marine Environment Monitoring: A Review. Sensors. 2019 Jan;19(7):1711.

Liu X, Sheng Z, Yin C. Routing Protocol for Low Power and Lossy IoT Networks. In From Internet of Things to Smart Cities 2017 Sep 1 (pp. 89-118). Chapman and Hall/CRC.

Al-Qurabat AK, Idrees AK. Energy-efficient adaptive distributed data collection method for periodic sensor networks. IJITST. 2018;8(3):297-335.

Jon Y. Adaptive sampling in wireless sensor networks for air monitoring system. 2016(Dissertation). Retrieved from http://urn. kb.se/resolve?urn=urn:nbn:se:uu:diva-295995

Al-Qurabat A, Idrees A. Distributed data aggregation protocol for improving lifetime of wireless sensor networks. QZSJ . 2017;2(2):204-15.

McAnlis C, Haecky A. Understanding compression: Data compression for modern developers. " O'Reilly Media, Inc."; 2016 Jul 13.

Bahi JM, Makhoul A, Medlej M. A two tiers data aggregation scheme for periodic sensor networks. AD HOC SENS WIREL NE. 2014 Jan 1;21(1-2):77-100.

Harb H, Makhoul A, Couturier R, Medlej M. ATP: An aggregation and transmission protocol for conserving energy in periodic sensor networks. In2015 IEEE 24th International Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises 2015 Jun 15 (pp. 134-139). IEEE.

Al-Qurabat AK, Idrees AK. Two level data aggregation protocol for prolonging lifetime of periodic sensor networks. WIREL NETW. 2019 Aug 1;25(6):3623-41.

Idrees AK, Al-Qurabat AK. Distributed Adaptive Data Collection Protocol for Improving Lifetime in Periodic Sensor Networks. IAENG Int J Comput Sci. 2017 Sep 1;44(3).

Al-Qurabat AK, Idrees AK. Distributed data aggregation and selective forwarding protocol for improving lifetime of wireless sensor networks. J. Eng. Appl. Sci. 2018;13(5 S1):4644-53.

Al-Qurabat AK, Idrees AK. Adaptive data collection protocol for extending lifetime of periodic sensor networks. QZSJ. 2017 Apr 10;2(2):83-92.

Idrees AK, Al-Qurabat AK, Jaoude CA, Al-Yaseen WL. Integrated Divide and Conquer with Enhanced k-means technique for Energy-saving Data Aggregation in Wireless Sensor Networks. In2019 15th International Wireless Communications & Mobile Computing Conference (IWCMC) 2019 Jun 24 (pp. 973-978). IEEE.

Qian J, Tiwari P, Gochhayat SP, Pandey HM. A noble double dictionary based ECG Compression Technique for IoTH. IEEE Internet Things J. 2020 Feb 18.

Lin CH, Wang WJ, Chen JC, Lin CW. Code Compression for Embedded Systems. In Embedded, Cyber-Physical, and IoT Systems 2020 (pp. 115-147). Springer, Cham.

Azar J, Makhoul A, Darazi R, Demerjian J, Couturier R. On the performance of resource-aware compression techniques for vital signs data in wireless body sensor networks. In2018 IEEE Middle East and North Africa Communications Conference (MENACOMM) 2018 Apr 18 (pp. 1-6). IEEE.

Schoellhammer T, Greenstein B, Osterweil E, Wimbrow M, Estrin D. Lightweight temporal compression of microclimate datasets. In 29th Annual IEEE International Conference on Local Computer Networks 2004 (pp. 516-524). IEEE.

Arrabi S, Lach J. Adaptive lossless compression in wireless body sensor networks. In Proceedings of the Fourth International Conference on Body Area Networks 2009 Apr 1 (pp. 1-8).

Aboelela E. Liftingwise: A lifting-based efficient data processing technique in wireless sensor networks. Sensors. 2014 Aug;14(8):14567-85.

Marcelloni F, Vecchio M. An efficient lossless compression algorithm for tiny nodes of monitoring wireless sensor networks. Comput. J. 2009 Nov 1;52(8):969-87.

Harb H, Makhoul A, Laiymani D, Bazzi O, Jaber A. An analysis of variance-based methods for data aggregation in periodic sensor networks. In Transactions on large-scale data-and knowledge-centered systems XXII 2015 (pp. 165-183). Springer, Berlin, Heidelberg.

Fomina M, Antipov S, Vagin V. Methods and algorithms of anomaly searching in collections of time series. In Proceedings of the First International Scientific Conference “Intelligent Information Technologies for Industry” (IITI’16) 2016 (pp. 63-73). Springer, Cham.

Eichinger F, Efros P, Karnouskos S, Böhm K. A time-series compression technique and its application to the smart grid. The VLDB J. 2015 Apr 1;24(2):193-218.

Bondu A, Boullé M, Cornuéjols A. Symbolic representation of time series: A hierarchical coclustering formalization. In International Workshop on Advanced Analysis and Learning on Temporal Data 2015 Sep 11 (pp. 3-16). Springer, Cham.

Sayood K. Introduction to data compression. Morgan Kaufmann; 2017 Oct 23.

Liu C, Luo J, Song Y. Correlation-model-based data aggregation in wireless sensor networks. In2015 12th international conference on fuzzy systems and knowledge discovery (FSKD) 2015 Aug 15 (pp. 822-827). IEEE.

Heinzelman WR, Chandrakasan A, Balakrishnan H. Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd annual Hawaii international conference on system sciences 2000 Jan 7 (pp. 10-pp). IEEE.

المؤلفات المشابهة

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.