A novelty Multi-Step Associated with Laplace Transform Semi Analytic Technique for Solving Generalized Non-linear Differential Equations

Main Article Content

Khalid Hammood AL-Jizani
https://orcid.org/0000-0002-8521-2090
Ahmed Hanoon Abud
https://orcid.org/0000-0001-8722-7109

Abstract

 


   In this work, a novel technique to obtain an accurate solutions to nonlinear form by multi-step combination with Laplace-variational approach (MSLVIM) is introduced. Compared with the  traditional approach for variational it overcome all difficulties and enable to provide us more an accurate solutions with extended of the convergence region as well as covering to larger intervals which providing us a continuous representation of approximate analytic solution and it give more better information of the solution over the whole time interval. This technique is more easier for obtaining the general Lagrange multiplier with reduces the time and calculations. It converges rapidly to exact formula with simply computable terms with few time. To investigate of this technique, selected examples to show the ability, validity, accurately and effectiveness. 

Article Details

How to Cite
1.
A novelty Multi-Step Associated with Laplace Transform Semi Analytic Technique for Solving Generalized Non-linear Differential Equations. Baghdad Sci.J [Internet]. 2023 Dec. 1 [cited 2025 Jan. 19];20(6). Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/6867
Section
article

How to Cite

1.
A novelty Multi-Step Associated with Laplace Transform Semi Analytic Technique for Solving Generalized Non-linear Differential Equations. Baghdad Sci.J [Internet]. 2023 Dec. 1 [cited 2025 Jan. 19];20(6). Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/6867

References

Khalid Hammood M, Noor A, Fadhel S. Variational Iteration Method for Solving Riccati Matrix Differential Equations. Indones. J. Electr. Eng. Comput. Sci. 2017; 5(3): 673-683, http://dx.doi.org/10.11591/ijeecs.v5.i3.pp673-683 .

Ghaleb S, Qaid Y. New Development of Adomian Decomposition Method for Solving Second Order Ordinary Differential Equations. Int. J. Math. S. 2020;6(2):28-49, http://dx.doi.org/10.53555/eijms.v6i1.44 .

Adnan D, Mohammed H. The Adomian Decomposition Method for Solving Nonlinear Partial Differential Equation Using Maple. APM. 2021. 11(6):290-304, http://dx.doi.org/10.4236/apm.2021.116038 .

Tzer Lu T, Quan Zheng W. Adomian decomposition method for first order PDEs with unprescribed data. Alex. Eng. J. 2021; 60(2): 563-2572, https://doi.org/10.1016/j.aej.2020.12.021 .

kwong M, Sing C, Harko T. A brief Introduction to the Adomian Decomposition Method, with Application in Astronomy and Astrophysics. Romanian Astron. J. 2019; (1) (2019):1- 41, https://doi.org/10.48550/arXiv.2102.10511 .

Hadjian A. A Variational Approach for One-Dimensional Scalar Field Problems..Indian J. Pure Appl. Math. 2018; 49: 621-632, http://dx.doi.org/10.1007/s13226-018-0290-7 .

Asim R, Zhao G, Ayesha Y, Mohamed N. Variational Iteration Method for Solving Legendre Differential Equations. IOSR-JM. 2020; 16(1): 43-49, http://dx.doi.org/10.9790/5728-1601044349 .

Khalid Hammood M, Noor A, Fadhel S. He’s Variational Iteration Method for Solving Riccati Matrix Delay Differential Equations of Variable Coefficients. AIP Conference Proceedings.2017; 1830(1): 1-10. https://doi.org/10.1063/1.4980892.

Che H, Amirah A, Ahmad I, Adem K, Ishak H. Approximate Analytical Solutions of Bright Optical Soliton for Nonlinear Schrödinger Equation of Power Law Nonlinearity. Baghdad Sci. J. 2021: 18(1): 836- 845, http://dx.doi.org/10.21123/bsj.2021.18.1(Suppl.).0836 .

Wurood R, Rand M. Solving Fractional Damped Burger Equation Approximately by using the Sumudu Transform (ST) Method. Baghdad Sci. J. 2021: 18(1): 803-808, http://dx.doi.org/10.21123/bsj.2021.18.1(Suppl.).0803 .

Mohammad H, Omid B. An optimal variational iteration method for investigating the physical behavior of quasi-steady squeezing flow confined between parallel rigid walls. Phys. Scr. 2021; 96(11):1-10, https://doi.org/10.1088/1402-896/ac1841 .

Ahmad M, Saif A, Ayiman A. Application of the alternative variational iteration method to solve delay differential equations. Phys. Sci. Int. J. 2020; 15(3): 112-119, https://doi.org/10.5897/IJPS2020.4879 .

Jihuan H. Variational iteration method-a kind of non-linear analytical technique: some examples. Int. J. Nonlinear Mech. 1999; 34 (1999): 699-708, https://doi.org/10.1016/S0020-7462%2898%2900048-1 .

Hijaz A, Tufail I, Khan A, Predrag I, Stanimirovic S, Yu-Ming C, Imtiaz A. Modified Variational Iteration Algorithm-II: Convergence and Applications to Diffusion Models. 2020; 2020:1-14: https://doi.org/10.1155/2020/8841718.

Jihuan H, Wu X. Variational iteration method: new development and applications, Comput. Math. Appl. 2007;54(2007):881-894, https://doi.org/10.1016/j.camwa.2006.12.083 .

Fatima A, Eltayeb A, Arbab I. A New Technique of Laplace Variational Iteration Method for Solving Space-Time Fractional Telegraph Equations. Int. J. Differ.Equ.2013;7(2013):1-10, https://doi.org/10.1155/2013/256593 .

J. Yindoula, S. Mayembo, G. Bissanga, Application of Laplace Variation Iteration Method to Solving the Nonlinear Gas Dynamics Equation. AJMCM. 2020; 5(4):127-133, https://doi.org/0.11648/j.ajmcm.20200504.15 .

Naveed A, Jihuan H. Laplace transform: Making the variational iteration method easier, Appl. Math. Lett. 2019; 92(2019): 134-138, https://doi.org/10.1016/j.aml.2019.01.016 .

Nehad A, Ioannis D, El-Zahar E, Jae D, Somaya T. The Variational Iteration Transform Method for Solving the Time-Fractional Fornberg–Whitham Equation and Comparison with Decomposition Transform Method. Mathematics. 2021; 9(141):1-14, https://doi.org/10.3390/math9020141 .

Ali H, Asad F, Mohammad Z. The multi-step homotopy analysis method for solving fractional-order model for HIV infection of CD4+T cells. J. Math.2015;34(4):307-322, http://dx.doi.org/10.4067/S0716-09172015000400001 .

Bastani M. Convergence of the multistage variational iteration method for solving a general system of ordinary differential equations. J. Math. Model.2014;2(1):90-106, http://research.guilan.ac.ir/jmm .

Khuri S. Sayfy A. A Laplace variational iteration strategy for the solution of differential equations. App. Mth. Lett. 2012; 25(12): 2298-2305, https://doi.org/10.1016/j.aml.2012.06.020 .

Hradyesh K. A Comparative Study of Variational Iteration Method and He-Laplace Method. App. Math.2012;3:1193-1201, http://dx.doi.org/10.4236/am.2012.310174 .

Huitzilín Y., Jose F. Laplace Variational Iteration Method for Modified Fractional Derivatives with Non-singular Kernel. J. Appl. Comput. Mech. 2020; 6(3):684-698, https://doi.org/10.22055/JACM.2019.31099.1827 .

Batiha B., Noorani M., Hashim I.,Ismail E. The multistage variational iteration method for a class of nonlinear system of ODEs. Phys. Scr. 2007; 76: 388- 392, https://doi.org/10.1088/0031-8949/76/4/018 .