تعزيز الحماية من التآكل لمعدنين الكربون والفولاذ المقاوم للصدأ باستخدام مثبط (قاعدة شيف) في ماء الملحي

محتوى المقالة الرئيسي

Mazin Hasan Raheema
https://orcid.org/0009-0002-5632-690X
Noor Ali Khudhair
https://orcid.org/0000-0003-0238-4952
Taghreed H. AL-Noor
https://orcid.org/0000-0002-6761-7131
Salam R Al-Ayash
https://orcid.org/0000-0003-2203-9902
Hussian H. Kharnoob
Shatha M. H. Obed
https://orcid.org/0000-0001-7241-6580

الملخص

قدم هذا البحث حلاً للمشكلة التي تواجه السبائك وهي مشكلة التآكل بتقليل التآكل وتعزيز الحماية باستخدام مثبط (قاعدة شيف). تم تحضير المثبط (قاعدة شيف) عن طريق تفاعل مواد الاولية (4-ثنائي ميثيل أمينوبنزالديهيد و 4-أمينو أنتيبيرين). تم تشخيصه بواسطة تقنية اشعة تحت الحمراء , حيث أثبت طيف الأشعة تحت الحمراء ومن خلال الحزم الواضحة أن قاعدة شيف قد تشكلت بشكل جيد وبنقاوة عالية. تمت دراسة سلوك التآكل للفولاذ الكربوني والفولاذ المقاوم للصدأ في وسط ملحي (ماء بحر صناعي 3.5٪ كلوريد الصوديوم) قبل وبعد استخدام المثبط عند أربع درجات حرارة: 20 ، 30 ، 40 ، و 50 درجة مئوية باستخدام ثلاثة أقطاب المجهاد الساكن. تمت دراسة سلوك التآكل بواسطة استقطاب الكاثود والأنود الذي تم من خلاله فحص جميع معاملات التآكل والتي تشمل: تيار التآكل(1341× 7-10- 5393 ×   9-10, جهد التآكل(-1.031 -  -0.227 SCE vs mV (, معدلات التاكل ( 0.658-0.007 mm.y-1), نسبة كفاءة التثبيط (92-98%), وطاقة التنشيط (4.709-26.733 كيلو جول/مول). تمت أيضًا دراسة الخصائص الديناميكية الحرارية والحركية لسلوك التآكل لهذين المعدنين قيد الدراسة ، والتي تشمل الانثالبي الحراري (2.153-24.176 كيلو جول/مول, الانتروبي(-197 -  -156 كيلو جول/مول), وطاقة جبس الحرة (59.87-74.56 كيلو جول/مول) قبل وبعد اضافة المثبط.

تفاصيل المقالة

كيفية الاقتباس
1.
تعزيز الحماية من التآكل لمعدنين الكربون والفولاذ المقاوم للصدأ باستخدام مثبط (قاعدة شيف) في ماء الملحي. Baghdad Sci.J [انترنت]. 20 يونيو، 2023 [وثق 20 مايو، 2024];20(3(Suppl.):1012. موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/7749
القسم
article

كيفية الاقتباس

1.
تعزيز الحماية من التآكل لمعدنين الكربون والفولاذ المقاوم للصدأ باستخدام مثبط (قاعدة شيف) في ماء الملحي. Baghdad Sci.J [انترنت]. 20 يونيو، 2023 [وثق 20 مايو، 2024];20(3(Suppl.):1012. موجود في: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/7749

المراجع

Rehan A, Lami N, Khudhair N. Synthesis, Characterization and Anti-corrosion Activity of New Triazole, Thiadiazole and Thiazole Derivatives Containing Imidazo[1,2-a]pyrimidine Moiety. Chem Methodol. 2021; 5(4): 285-295. https://doi.org/10.22034/chemm.2021.130448.

Misawa T, Kyuno T, Suetaka W, Shimodaira S. The mechanism of atmospheric rusting and the effect of Cu and P on the rust formation of low alloy steels. Corros Sci. 1971; 11(1): 35-48. https://doi.org/10.1016/S0010-938X(71)80072-0.

Maryam A, Sahar P, Abdollah A. Corrosion resistance and photocatalytic activity evaluation of electrophoretically deposited TiO2-rGO nanocomposite on 316L stainless steel substrate. J Ceramint. 2019; 45(11): 13747-13760. https://doi.org/10.1016/j.ceramint.2019.04.071.

Gallegos M, Serna S, Lázaro I, Gutiérrez J, Mercado H, Arcos H, et al. Potentiodynamic polarization performance of a novel composite coating system of Al2O3/chitosan-sodium alginate, applied on an aluminum AA6063 alloy for protection in a chloride ions environment. Coatings. 2020; 10(1): 1-17. https://doi.org/10.3390/coatings10010045.

Khudhair A, Al-Sammarraei A. Enhancing of corrosion protection of steel rebar in concrete using TiO2 nanoparticles as additive. Iraqi J Sci. 2019; 60(9): 1898-1903. https://doi.org/10.24996/ijs.2019.60.9.2

Saed A, Abdulkareem A. Anticorrosion behavior of deposited nanostructured polythiophene on stainless steel carbon steel and aluminum in sea water. Int J Eng Res Sci.2016; 2(3) :1-7.

Mohammed F, Moustafa M, Marwa F, Ahmed H. Evaluation of synthesized polyaniline nanofibres as corrosion protection film coating on copper substrate by electrophoretic deposition. J Mater Sci. 2022; 57(3): 6085–6101. https://doi.org/10.1007/s10853-022-06994-3.

Karthika Sh, Jayadev, Kalyan R, Ananda M. Evaluation of Electrochemical and Anticorrosion Properties of Polyaniline-Fly Ash Nanocomposite. Int J Corros. 2021; 2021 (1547384): 1-10. https://doi.org/10.1155/2021/1547384.

Al-Sammarraei M, Mazin R. Reduced Graphene Oxide Coating for Corrosion Protection Enhancement of Carbon Steel in Sea water. Iraqi J Sci. 2016; (Special Issue, Part B): 243-250.

Al-Sammarraei M, Mazin R. Electrodeposited Reduced Graphene Oxide Films on Stainless Steel, Copper, and Aluminum for Corrosion Protection Enhancement. Int J Corros. 2017; 2017 (6939354): 1-8. https://doi.org/10.1155/2017/6939354 .

Le B, Xinli L, Dezhi W. Electrophoretic deposition of graphene coating as a corrosion inhibitor for copper in NaCl solution. Res Surf Interfaces . 2022; 8(100077): 1-6. https://doi.org/10.1016/j.rsurfi.2022.100077.

Yang S, Zhuo K, Sun D, Wang X, Wang J. Preparation of graphene by exfoliating graphite in aqueous fulvic acid solution and its application in corrosion protection of aluminum. J Colloid Interface Sci. 2019; 543(7419): 263-272. https://doi.org/10.1016/j.jcis.2019.02.068.

Zeena Sh, Abeer K, Taghried A. Study the Inhibition Effect of Amoxicillin Drug for Corrosion of Carbon Steel in Saline Media. Baghdad Sci J. 2022; 19(1): 121-131. https://doi.org/10.21123/bsj.2022.19.1.0121.

Rasha A, Nafeesa J, Halah J, Ahlam M. Effect of Orphenadrine Citrate Drug on Corrosion of 316L Stainless Steel in Hydrochloric Acid. Baghdad Sci J. 2022; 63(7): 2793-2803. https://doi.org/10.24996/ijs.2022.63.7.4.

Rasha A, Nafeesa J, Ahlam M. Experimental and Theoretical Study of Neomycin Sulfate as Corrosion Protection for Titanium in Acid Media. Baghdad Sci J. 2021; 18(2): 374-383. https://doi.org/10.21123/bsj.2021.18.2.0374.

Farhan A M, Jassim R A, Mohamoed A A. Corrosion Protection of Carbon Steel By Voltaren Drug in Acid Media and Theoretical Studies. Res J Pharm Biol Chem Sci. 2018; 9(2): 705-715.

Taghried A, Qusay A, Mohammed A, Ahmed A, Lina M ,Abdul Amir H, et al. New environmental friendly corrosion inhibitor of mild steel in hydrochloric acid solution: Adsorption and thermal studies. Cogent Eng. 2020; 7(1): 1-17. https://doi.org/10.1080/23311916.2020.1826077.

Kadhim A, Al-Amiery A, Alazawi R, Al-Ghezi M, Abass R. Corrosion inhibitors. A review. Int J Corros Scale Inhib. 2021; 10(1): 54–67. https://doi.org/10.17675/2305-6894-2021-10-1-3.

Hanoon M, Resen M, Al-Amiery A, Kadhum H, Takriff S. Theoretical and Experimental Studies on the Corrosion Inhibition Potentials of 2-((6-Methyl-2-Ketoquinolin-3-yl)Methylene) Hydrazinecarbothioamide for Mild Steel in 1 M HCl. Prog. Color Colorants Coat. 2022; 15(1): 21-33. https://doi.org/10.30509/pccc.2020.166739.1095.

Yasir M, Eltmimi A, Alhabeeb S, May H. Experimental and theoretical investigations on the inhibition efficiency of N-(2,4-dihydroxytolueneylidene)-4-methylpyridin-2- amine for the corrosion of mild steel in hydrochloric acid. Int J Corros Scale Inhib. 2021; 10(3): 885–899. https://doi.org/10.17675/2305-6894-2021-10-3-3.

Mustafa M, Sayyid F, Betti N, shaker L, Hanoon M, Alamiery A, et al. Inhibition of mild steel corrosion in hydrochloric acid environment by 1-amino-2-mercapto-5-(4-(pyrrol-1-yl)phenyl)-1,3,4-triazole. S Afr J Chem Eng 2022; 39(11): 42-51. https://doi.org/10.1016/j.sajce.2021.11.009.

Festus C, Odozi W, Olakunle M. Preparation, Spectral Characterization and Corrosion Inhibition Studies of (E)-N-{(Thiophene-2-yl)methylene}pyrazine-2-carboxamide Schiff Base Ligand. Protect Met. 2020; 56(3): 651-662. https://doi.org/10.1134/S2070205120030107.

Bhaskara Sh, Fakrudeen P, Desalegn T, Murthy A, Bheemaraju V. Evaluation of Corrosion Inhibition Efficiency of Aluminum Alloy2024 by Diaminostilbene and Azobenzene Schiff Bases in 1 M Hydrochloric Acid. Int J Corros. 2021; 2021(5869915): 1-20. https://doi.org/10.1155/2021/5869915.

Bahaa S , Muna K , Mustafa K , Waleed K, Mahdi M, Mohammed H, et al. Corrosion Inhibition of Mild Steel in Hydrochloric Acid Environment Using Terephthaldehyde Based on Schiff Base: Gravimetric, Thermodynamic, and Computational Studies. Molecules. 2022; 27(4857): 1-19. https://doi.org/10.3390/molecules27154857.

El-Bakri Y, Boudalia M, Echihi S, Harmaoui A, Sebhaoui J, Elmsellem H, et al. Performance and theoretical study on corrosion inhibition of new Triazolopyrimidine derivative for carbon steel in the corrosion of carbon steel in sea water. Iraq J Sci., 2019; 60(4): 688-705.

Rehab K, Suaad H, Athraa A. Synthesis, identification, theoretical and experimental studies for carbon steel corrosion inhibition in seawater for new urea and thiourea derivatives linkage to 5-nitro isatin moiety. Der Phar Chem.2018; 10(7): 86-99.

Salman T, Zinad D, Jaber H, Al-Ghezi M, Mahal A, Takriff M, et al. Effect of 1,3,4-Thiadiazole Scaffold on the Corrosion Inhibition of Mild Steel in Acidic Medium: An Experimental and Computational Study. J Bio Tribocorros. 2019; 5(2): 1-11. https://www.doi.org/10.1007/S40735-019-0243-7.

Rehab M, Mustafa Al. Theoretical and Experimental Study of Corrosion Behavior of Carbon Steel Surface in 3.5% NaCl and 0.5 M HCl with Different Concentrations of Quinolin2-One Derivative. Baghdad Sci J. 2022; 19(1): 105-120. https://doi.org/10.21123/bsj.2022.19.1.0105.

Rehab M, Mustafa A, Luma S. DFT Calculations and Experimental Study to Inhibit Carbon Steel Corrosion in Saline Solution by Quinoline-2-One Derivative. Baghdad Sci J. 2020; 18(1): 113-123. https://doi.org/10.21123/bsj.2021.18.1.0113.

Rasha A, Muna S, Ahlam M. Protection of Galvanized steel from corrosion in salt media using sulfur. Baghdad Sci J. 2022; 19(2): 347-354. https://dx.doi.org/10.21123/bsj.2022.19.2.0347.

Mansfeld F. Tafel slopes and corrosion rates from polarization resistance measurements. Corrosion. 1973; 29(10): 397-402. https://doi.org/10.5006/0010-9312-29.10.397.

Kiani M, Mousavi M, Mousavi S, Shamsipur M, Kazemi S. Inhibitory effect of some amino acids on corrosion of Pb–Ca–Sn alloy in sulfuric acid solution. Corros Sci. 2008; 50(4): 1035-1045. https://doi.org/10.1016/j.corsci.2007.11.031.

Paul S, Van Z. Corrosion deterioration of steel in cracked SHCC. Int J Concr Struct Mater. 2017; 11(3):557-572. https://doi.org/10.1007/s40069-017-0205-8.

Rashd M, Musa A, Farah W, Bulgasem Y. Synthesis, Characterization and Antibacterial Activityof Schiff Bases Derived from 4-Dimethylaminobenzaldehyde with Some Amino Acids and 4-Aminoantipyrine toward Cu (II), Ni (II), Co (II), Cd (II) and Mn (II) Ions. IOSR J Appl Chem. 2017; 10(6): 6-13. https://dx.doi.org/10.9790/5736-1006010613

المؤلفات المشابهة

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.