COMPARATIVE STUDY BETWEEN A NOVEL DETERMINISTIC TEST FOR MERSENNE PRIMES AND THE WELL-KNOWN PRIMALITY TESTS

Main Article Content

Yahia Awad
Ramiz Hindi
Haissam Chehade
https://orcid.org/0000-0002-0639-0236

Abstract

In this article, a new deterministic primality test for Mersenne primes is presented. It also includes a comparative study between well-known primality tests in order to identify the best test. Moreover, new modifications are suggested in order to eliminate pseudoprimes. The study covers random primes such as Mersenne primes and Proth primes. Finally, these tests are arranged from the best to the worst according to strength, speed, and effectiveness based on the results obtained through programs prepared and operated by Mathematica, and the results are presented through tables and graphs.

Article Details

How to Cite
1.
COMPARATIVE STUDY BETWEEN A NOVEL DETERMINISTIC TEST FOR MERSENNE PRIMES AND THE WELL-KNOWN PRIMALITY TESTS. Baghdad Sci.J [Internet]. 2023 Oct. 28 [cited 2024 Dec. 19];20(5(Suppl.). Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/7791
Section
article

How to Cite

1.
COMPARATIVE STUDY BETWEEN A NOVEL DETERMINISTIC TEST FOR MERSENNE PRIMES AND THE WELL-KNOWN PRIMALITY TESTS. Baghdad Sci.J [Internet]. 2023 Oct. 28 [cited 2024 Dec. 19];20(5(Suppl.). Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/7791

References

Al-Bundi SS. On Subliminal Cryptography. Baghdad Sci J. 2006; 3(1): 124-130.

Khudhair ZN, Nidhal A, El Abbadi NK. Text Multilevel Encryption Using New Key Exchange Protocol. Baghdad Sci J. 2022; 19(3): 0619-0619. https://doi.org/10.21123/bsj.2022.19.3.0619

Albrecht MR, Massimo J, Paterson KG, Somorovsky J. Prime and Prejudice: Primality Testing Under Adversarial Conditions. Proc ACM SIGSAC Conf Comput Commun Secur. (CCS’18). 2018: 281-298. https://doi.org/10.1145/3243734.3243787

Bunder M, Nitaj A, Susilo W, Tonien J. A Generalized Attack on RSA Type Cryptosystems. Theor Comput Sci. 2017; 704: 74-81. https://doi.org/10.1016/j.tcs.2017.09.009

Menezes AJ, Kenneth HR, Van Oorschot PC, Vanstone SA. Handbook of Applied Cryptography. Boca Raton: CRC press; 2020. 810 p. https://doi.org/10.1201/9780429466335

Banerjee K, Mandal SN, Das SK. A Comparative Study of Different Techniques for Prime Testing in Implementation of RSA. Am J Adv Comput. 2020; 1(1): 1-7. https://doi.org/10.15864/ajac.1102

Landau E. Elementary Number Theory. USA: American Mathematical Society; 2021. 256 p.

Alqaydi L, Yeun CY, Damiani E. A Modern Solution for Identifying, Monitoring, and Selecting Configurations for SSL/TLS Deployment. Int Conf Appl Comput Inf Technol (ACIT 2018). Springer, Cham. 2018; 78-88. https://doi.org/10.1007/978-3-319-98370-7_7

Ramzy A A. Primality Test for Kpn + 1 Numbers and A Generalization of Safe Primes and Sophie Germain Primes. arXiv preprint arXiv: 2207.12407. 2022 Jul 25. https://doi.org/10.48550/arXiv.2207.12407

Zheng Z. Prime Test. Modern Cryptography. 2022; 1: 197-228. https://doi.org/10.1007/978-981-19-0920-7_5

Andrica D, Bagdasar O. On Generalized Lucas Pseudoprimality of Level k. Mathematics. 2021 Apr 12; 9(8): 838. https://doi.org/10.3390/math9080838

Andrica D, Bagdasar O. Pseudoprimality Related to the Generalized Lucas Sequences. Math Comput Simul. 2022; 201: 528-542. https://doi.org/10.1016/j.matcom.2021.03.003

Baillie R, Wagstaff SS. Lucas Pseudoprimes. Math Comput. October 1980; 35(152): 1391-1417. https://doi.org/10.2307/2006406

Baillie R, Fiori A, Wagstaff Jr S. Strengthening the Baillie-PSW Primality Test. Math Comput. 2021; 90(330): 1931-1955. https://doi.org/10.1090/mcom/3616

Crandall R, Pomerance CB. Prime Numbers: a Computational Perspective. Math Gaz. 2002; 86(507): 552-554. https://doi.org/10.2307/3621190

Agrawal M, Kayal N, Saxena N. Errata: PRIMES is in P. Ann Math. 2019; 189(1): 317-318. https://doi.org/10.4007/annals. 2019.189.1.6

‏Menon V. Deterministic Primality Testing-Understanding the AKS Algorithm. arXiv preprint arXiv:1311.3785. 2013. https://doi.org/10.48550/arXiv.1311.3785

Sridharan S, Balakrishnan R. Discrete Mathematics: Graph Algorithms, Algebraic Structures, Coding Theory, and Cryptography. 1st Ed. New York: Chapman and Hall/CRC Press; 2019. 340 p. https://doi.org/10.1201/9780429486326

Cao Z, Liu L. Remarks on AKS Primality Testing Algorithm and A Flaw in the Definition of P. arXiv preprint arXiv:1402.0146. 2014 Feb 2. https://doi.org/10.48550/arXiv.1402.0146

Lenstra Jr HW, Pomerance CB. Primality Testing with Gaussian Periods. J Eur Math Soc. 2019; 21(4): 1229-1269. https://doi.org/10.4171/JEMS/861

Bisson G, Ballet S, Bouw I. Arithmetic, Geometry, Cryptography and Coding Theory. Amer Math Soc. 2021; 770: 104-131. https://doi.org/10.1090/conm/770

Wu L, Cai HJ, Gong Z. The Integer Factorization Algorithm with Pisano Period. IEEE Access. 2019; 7: 167250-167259. https://doi.org/10.1109/ACCESS.2019.2953755

Bruce JW. A really trivial proof of the Lucas-Lehmer Primality Test. Am Math Mon. 1993; 100(4): 370-371. https://doi.org/10.1080/00029890.1993.11990414

Théry L, Antipolis S. Primality Tests and Prime Certificate. arXiv preprint arXiv: 2203. 16341. 2022. https://doi.org/10.48550/arXiv.2203.16341

Kundu S, Mazumder S. Number Theory and its Applications. 1st Ed. London: CRC Press; 2022. 366 p. https://doi.org/10.1201/9781003275947

Similar Articles

You may also start an advanced similarity search for this article.