Best approximation in b-modular spaces
Main Article Content
Abstract
In this paper, some basic notions and facts in the b-modular space similar to those in the modular spaces as a type of generalization are given. For example, concepts of convergence, best approximate, uniformly convexity etc. And then, two results about relation between semi compactness and approximation are proved which are used to prove a theorem on the existence of best approximation for a semi-compact subset of b-modular space.
Received 14/12/2022,
Revised 21/07/2023,
Accepted 23/07/2023,
Published Online First 20/08/2023
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
Singh S, Watson B, Srivastava P. Fixed point theory and best approximation: The KKM-map Principle. Dordrecht, Germany: Springer; 1997. p. 232. https://www.amazon.com/Fixed-Point-Theory-Best-Approximation/dp/0792347587
Abed AN, Abed SS. Convergence and stability of iterative scheme for a monotone total asymptotically non-expansive mapping. Iraqi J Sci. 2022; 63(1): 241-250. https://ijs.uobaghdad.edu.iq/index.php/eijs/article/view/4331/2130
Radhakrishnan M, Rajesh S, Sushama A. Some fixed point theorems on non-convex sets. Appl Gen Topol. 2017; 18(2): 377-390. https://www.researchgate.net/publication/320345812_Some_fixed_point_theorems_on_non-convex_sets
Jaworowski J, Kirk WA, Park S. Antipodal points and fixed points. Lect. Notes Ser. 1995; 28: 55-97. https://www.researchgate.net/publication/266752851_Antipodal_points_and_fixed_points
Kozlowski WM. Modular Function Spaces. Series of Monographs and Textbooks in Pure and Applied Mathematics. Vol. 122. New York: Marce Dekker Inc.; 1988. p. 252. https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/referencespapers.aspx?referenceid=2125146
Harjulehto P, Hästö P. Extension in generalized Orlicz spaces. Nonlinear Stud. 2019; 26(4): 861–868. https://arxiv.org/pdf/1910.03893.pdf
Harjulehto P, Hästö P. Orlicz spaces and generalized Orlicz spaces. Lecture Notes in Mathematics. Vol. 2236. New York: Springer Cham; 2019. p. 180. http://harjulehto.fi/pdf/Book-gOrlicz.pdf
Abed SS. On invariant best approximation in modular spaces. Glob. J Pure Appl Math. 2017; 13(9): 5227-5233. https://www.ripublication.com/gjpam17/gjpamv13n9_102.pdf
Turkoglu S, Nesrin M. Fixed point theorems in a new type of modular metric spaces. J Fixed Point Theory Appl. 2018; 25: 1-9. https://fixedpointtheoryandalgorithms.springeropen.com/articles/10.1186/s13663-018-0650-3
Albundi ShS, Iterated function system in ∅-metric spaces. Bol da Soc Parana de Mat, 2022; 40: 1-10. https://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/52556/751375153614
Abdul Jabbar MF, Abed SS. Some results on normalized duality mappings and approximating fixed points in convex real moduler spaces. Baghdad Sci J. 2021; 18(4): 1218-1225. https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/4322
Abdul Jabbar MF, Abed SS. The convergence of iteration scheme to fixed points in modular spaces. Iraqi J Sci. 2020; 60(10): 2197-2202. https://ijs.uobaghdad.edu.iq/index.php/eijs/article/view/1037
Kadhim AJ. New common fixed Points for total asymptotically nonexpansive mapping in cat0) Space. Baghdad Sci J. 2021; 18(4): 1286-1293. https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/4639
Mohammed NJ, Abed SS. On invariant approximations in modular spaces. Ira. J Sci. 2021; 62(9): 3097-3101. https://ijs.uobaghdad.edu.iq/index.php/eijs/article/view/3525
Pathak HK, Beg I. Fixed point of multivalued contractions by altering distances with application to nonconvex Hammerstein type integral inclusions. Fixed Point Theory. 2021; 22(1): 327-342. https://www.math.ubbcluj.ro/~nodeacj/volumes/2021-No1/211-pat-beg-3051-final.php
Abed SS, Abduljabbar MF. Approximating fixed points in modular spaces. Karbala Int J Mod Sci. 2020; 6(2): 121-128. https://kijoms.uokerbala.edu.iq/cgi/viewcontent.cgi?article=1353&context=home
Abed S S, Abdul Jabber M.F, Equivalence between iterative schemes in modular spaces. J Interdiscip Math.2019; 22(.8): 1529–1535. https://www.tandfonline.com/doi/abs/10.1080/09720502.2019.1706850
Ege ME, Alaca C. Some results for modular b-Metric spaces and an application to system of linear equations. Azerb J Math. 2018; 8(1): 1-13. https://www.azjm.org/volumes/0801/0801-1.pdf
Salman BB, Abed SS, A new iterative sequence of (λ,ρ)-firmly nonexpansive multivalued mappings in modular function Spaces. Math. Mod Eng . Prob . 2022; 10 (1): 212-219. file:///C:/Users/DELL/Downloads/mmep_10.01_24%20(3).pdf