Odd Fibonacci edge irregular labeling for some trees obtained from subdivision and vertex identification operations
Main Article Content
Abstract
Let G be a graph with p vertices and q edges and be an injective function, where k is a positive integer. If the induced edge labeling defined by for each is a bijection, then the labeling f is called an odd Fibonacci edge irregular labeling of G. A graph which admits an odd Fibonacci edge irregular labeling is called an odd Fibonacci edge irregular graph. The odd Fibonacci edge irregularity strength ofes(G) is the minimum k for which G admits an odd Fibonacci edge irregular labeling. In this paper, the odd Fibonacci edge irregularity strength for some subdivision graphs and graphs obtained from vertex identification is determined.
Received 21/1/2023
Revised 13/2/2023
Accepted 14/2/2023
Published 1/3/2023
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
West DB. Introduction to Graph Theory. 2nd edition. India: Prentice – Hall; 2001. p. 260. https://athena.nitc.ac.in/summerschool/Files/West.pdf
Al-Harere MN, Mitlif RJ, Sadiq FA. Variant Domination Types for a Complete H-ary Tree. Baghdad Sci J. 2021; 18(1(Suppl.)): 797-802. https://doi.org/10.21123/bsj.2021.18.1(Suppl.).0797
Omran AA, Haneen H O. Hn Domination in Graphs. Baghdad Sci J. 2019; 16(1(Suppl.)): 242-247. https://doi.org/10.21123/bsj.2019.16.1(Suppl.).0242
Rosa A. On Certain Valuations of the Vertices of a Graph. Theory of Graphs International Symposium, Rome, 1966. USA: Gordon & Breach Publishers, Inc; 1967. pp. 349 - 355. http://www.cs.columbia.edu/~tim/teaching/cs4203/Rosa-GracefulLabelings.pdf
Kalyan S, Kempepatil R. Note on Advanced Labeling and Fibonacci Graceful graphs. Pramana Res J. 2019; 9(5): 295 – 317. https://www.pramanaresearch.org/gallery/prj-p810.pdf
Karthikeyan S, Navanaeethakrishnan S, Sridevi R. Total Edge Fibonacci Irregular Labeling of Some Star Graphs. Int J Math Soft Comput. 2015; 5(1): 73-78. https://oaji.net/articles/2017/296-1504962802.pdf
Amutha S, Uma Devi M. Total Edge Fibonacci Irregular labeling for Fan, Wheel and Umbrella Graph. J Comp Math Sci. 2019; 10 (12): 1654-1664. http://www.compmath-journal.org/dnload/S-Amutha-and-M-Uma-Devi-/CMJV10I12P1654.pdf
Chitra G, Priya J, Vishnupriya Y. Odd Fibonacci Mean Labeling of Some Special Graphs. Int J Math. TrendsTechnol . 2020; 66 (1): 115 - 126. http://www.ijmttjournal.org/Volume-66/Issue-1/IJMTT-V66I1P515.pdf
Baskaro SET, Simanjuntak R. On the Vertex Irregular labeling for Subdivision for Trees. Australas J Comb. 2018; 71(2): 293-302. https://ajc.maths.uq.edu.au/pdf/71/ajc_v71_p293.pdf
Uma Devi M, Kamaraj M, Arockiaraj S. Odd Fibonacci Edge Irregular Labeling for Some Simple Graphs. J Algebr Stat. 2022; 13(3): 1230-1238. https://www.publishoa.com/index.php/journal/article/view/742
Gallian JA. A Dynamic Survey of Graph Labeling. 25th edition. Electron J Comb. 2022; 623 pages. https://www.combinatorics.org/ojs/index.php/eljc/article/viewFile/DS6/pdf