Antifungal Potential of Cladosporium sp. (Endophytic fungi) Associated with Olea europaea L. Leaves

Main Article Content

Milad Adnan Mezher
Rabab Majead Abed
https://orcid.org/0000-0002-5673-6346

Abstract

In the leaves of Olea europaea L. Olive trees an endophytic fungus was discovered. Cladosporium sp. was identified to be the fungus based on its morphological characteristics and nuclear ribosomal DNA ITS sequence analysis and was registered in NCBI as the Cladosporium genus has been registered under the number (0P939922.1) The species was not specified, and it was considered of unknown species after comparing it to global isolates. In comparison to olive leaf extract, Cladosporium sp. including total flavonoid, total phenolic, total terpenoid, and total saponins, Which were 121.9%, 198.1%, 89.13%, and 29.87 % respectively compared to its content in olive leaf extract, which was 61.54 %, 67.88 % , 17.1%, and 20.19% respectively. The Cladosporium sp. extract inhibited the growth of 27 isolates belonging to different species of candida which were Candida albicans , C. lypolitica , C. tropicalis , C. sphaerica , C. krusei , C. guilliermondii , C. parapsilosis , C. norvegicus , C. glabrata , and C. kefyr , the inhibition effects increased with increasing concentration to reach the highest level to suppress fungal growth when concentrated 30 mg/ml. This proves the antifungal potential of endophytic fungi in the future.

Article Details

How to Cite
1.
Antifungal Potential of Cladosporium sp. (Endophytic fungi) Associated with Olea europaea L. Leaves. Baghdad Sci.J [Internet]. 2023 Dec. 5 [cited 2025 Jan. 19];20(6(Suppl.):2385. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/9004
Section
article

How to Cite

1.
Antifungal Potential of Cladosporium sp. (Endophytic fungi) Associated with Olea europaea L. Leaves. Baghdad Sci.J [Internet]. 2023 Dec. 5 [cited 2025 Jan. 19];20(6(Suppl.):2385. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/9004

References

Aharwal RP, Kumar S, Sandhu SS. Endophytic mycoflora: antibacterial secondary metabolites and their therapeutic potential. Curr Pharmacol Rep. 2021 Sep; 7(4): 150-70. https://doi.org/10.1007/s40495-021-00261-w

Toppo P, Kagatay LL, Gurung A, Singla P, Chakraborty R, Roy S, et al. Endophytic fungi mediates production of bioactive secondary metabolites via modulation of genes involved in key metabolic pathways and their contribution in different biotechnological sector. 3 Biotech. 2023 Jun; 13(6): 191. https://doi.org/10.1007/s13205-023-03605-z

Jiang Q, Wei N, Huo Y, Kang X, Chen G, Wen L. Secondary metabolites of the endophytic fungus Cladosporium sp. CYC38. Chem Nat Compd. 2020; 56: 1166-9. https://doi.org/10.1007/s10600-020-03257-y

Nicoletti R. Endophytic fungi of citrus plants. Agriculture. 2019 ; 9(12): 247.

https://doi.org/10.3390/agriculture9120247

Le TT, Hoang AT, Nguyen NP, Le TT, Trinh HT, Vo TT, et al. A novel huperzine A-producing endophytic fungus Fusarium sp. Rsp5. 2 isolated from Huperzia serrate. Biotechnol Lett. 2020 ; 42(6): 987-995. https://doi.org/10.1007/s10529-020-02836-x

Ismail MA, Amin MA, Eid AM, Hassan SE, Mahgoub HA, Lashin I, et al. Comparative Study between exogenously applied plant growth hormones versus metabolites of microbial endophytes as plant growth-promoting for Phaseolus vulgaris L. Cells. 2021 ;10(5): 1059. https://doi.org/10.3390/cells10051059

Mamaghani NA, Saremi H, Javan-Nikkhah M, De Respinis S, Pianta E, Tonolla M. Endophytic Cephalotrichum spp. from Solanum tuberosum (potato) in Iran–a polyphasic analysis. Sydowia. 2022 ;74: 287-301. https://www.verlag-berger.at/detailview?no=2999

Malik LA, Aziz GM, Ad’hiah AH. The potential of some plant extracts as radical scavengers and dipeptidyl peptidase-4 inhibitors. Baghdad Sci J. 2019 Jan 2; 16(1): 162-168. https://doi.org/10.21123/bsj.2019.16.1(Suppl.).0162

Omar SH, Scott CJ, Hamlin AS, Obied HK. Biophenols: Enzymes (β-secretase, Cholinesterases, histone deacetylase and tyrosinase) inhibitors from olive (Olea europaea L.). Fitoterapia. 2018; 128: 118-129. https://doi.org/10.1016/j.fitote.2018.05.011

Syed RU, Moni SS, Alfaisal RH, Alrashidi RH, Alrashidi NF, Wadeed KM, et al. Spectral characterization of the bioactive principles and antibacterial properties of cold methanolic extract of Olea europaea from the Hail region of Saudi Arabia. Arab J Chem.. 2022; 15(8): 104006. https://doi.org/10.1016/j.arabjc.2022.104006

Rezagholizadeh L, Aghamohammadian M, Oloumi M, Banaei S, Mazani M, Ojarudi M. Inhibitory effects of Ficus carica and Olea europaea on pro-inflammatory cytokines: A review. Iran J Basic Med Sci. 2022; 25(3): 268. https://doi.org/10.22038/IJBMS.2022.60954.13494

Martins F, Pereira JA, Bota P, Bento A, Baptista P. Fungal endophyte communities in above-and belowground olive tree organs and the effect of season and geographic location on their structures. Fungal Ecol. 2016 ; 20: 193-201. https://doi.org/10.1016/j.funeco.2016.01.005

Varanda CM, Materatski P, Landum M, Campos MD, Félix MD. Fungal communities associated with peacock and cercospora leaf spots in olive. Plants. 2019 Jun 12; 8(6): 169. https://doi.org/10.3390/plants8060169

Malhadas C, Malheiro R, Pereira JA, de Pinho PG, Baptista P. Antimicrobial activity of endophytic fungi from olive tree leaves. World J Microbiol Biotechnol. 2017; 33: 1-12. https://doi.org/10.1007/s11274-017-2216-7

Lateef AA, Garuba T, Abdulkareem KA, Olayinka BU, Olahan GS, Adeyemi SB, et al. Molecular Characterization of Potential Crop Pathogens Associated with Weeds as Endophytes in Uniilorin Plantations, Nigeria. Baghdad Sci J. 2022 Dec 1; 19(6): 1201. https://doi.org/10.21123/bsj.2022.5999

Gupta VK, Tuohy MG, Ayyachamy M, Turner KM, O’donovan A. Laboratory protocols in fungal biology. Springer International Publishing; 2nd Ed, 2022: 261. https://doi.org/10.1007/978-3-030-83749-5

Schubert K, Groenewald JZ, Braun U, Dijksterhuis J, Starink M, Hill CF, et al. Biodiversity in the Cladosporium herbarum complex (Davidiellaceae, Capnodiales), with standardisation of methods for Cladosporium taxonomy and diagnostics. Stud Mycol. 2007 Jan 1; 58: 105-56. https://doi.org/10.3114/sim.2007.58.05

Zhang P, Zhou PP, Yu LJ. An endophytic taxol-producing fungus from Taxus media, Cladosporium cladosporioides MD2. Curr Microbiol. 2009 Sep; 59: 227-32. https://doi.org/10.1007/s00284-008-9270-1

White T,j. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications. 1990:315-22. https://doi.org/10.1016/B978-0-12-372180-8.50042-1

Badotti F, de Oliveira FS, Garcia CF, Vaz AB, Fonseca PL, Nahum LA, et al. Effectiveness of ITS and sub-regions as DNA barcode markers for the identification of Basidiomycota (Fungi). BMC Microbiol. 2017 Dec; 17(1): 1-2. https://doi.org/10.1186/s12866-017-0958-x

Kumar S, Tamura K, Nei M. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform. 2004 Jun 1; 5(2): 150-63. https://doi.org/10.1093/bib/5.2.150

Lin JY, Tang CY. Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food Chem. 2007 ;101(1): 140-147. https://doi.org/10.1016/j.foodchem.2006.01.014

Zhu H, Wang Y, Liu Y, Xia Y, Tang T. Analysis of flavonoids in Portulaca oleracea L. by UV–vis spectrophotometry with comparative study on different extraction technologies. Food Anal Methods. 2010 ; 3: 90-97. https://doi.org/10.1007/s12161-009-9091-2

Datta D, Behera L, Chaudhary VT, Kumar S, Bisen K. Endophytes: rendering systemic resistance to plants. InRhizosphere Microbes: Biotic Stress Management 2022 Oct 8 (pp. 175-195). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-5872-4_9

Liu HG, Li T, Zhao YL, Zhang J, Wang YZ. Determination of some metabolites of Cordyceps sobolifera. Afr J Microbiol Res.2011; 5(30): 5518-5522.

Berkow EL, Lockhart SR. Fluconazole resistance in Candida species: a current perspective. Infect Drug Resist. 2017 Jul 31: 237-45. https://doi.org/10.2147/IDR.S118892

Petrini O. Fungal endophytes of tree leaves. InMicrobial ecology of leaves. Springer New York. 1991 : 179-197. https://doi.org/10.1007/978-1-4612-3168-4_9

Grinn-Gofroń A, Nowosad J, Bosiacka B, Camacho I, Pashley C, Belmonte J, et al. Airborne Alternaria and Cladosporium fungal spores in Europe: Forecasting possibilities and relationships with meteorological parameters. Sci Total Environ. 2019 Feb 25; 653: 938-46. https://doi.org/10.1016/j.scitotenv.2018.10.419

Khalil MI. Identification of Cladosporium sp. Fungi by in-silico RFLP-PCR. Baghdad Sci. J. 2020 Jan 2;17(1):220-6. https://doi.org/10.21123/bsj.2020.17.1(Suppl.).0220

Barzee TJ, Cao L, Pan Z, Zhang R. Fungi for future foods. J Future Foods. 2021 Sep 1; 1(1): 25-37. https://doi.org/10.1016/j.jfutfo.2021.09.002

Gauchan DP, Kandel P, Tuladhar A, Acharya A, Kadel U, Baral A, et al. Evaluation of antimicrobial, antioxidant and cytotoxic properties of bioactive compounds produced from endophytic fungi of Himalayan yew ( Taxus wallichiana) in Nepal. F1000Res. 2020 May 19; 9: 379. https://doi.org/10.12688/f1000research.23250.2