An Adaptive Harmony Search Part-of-Speech tagger for Square Hmong Corpus

Main Article Content

Di-Wen Kang
https://orcid.org/0009-0009-6928-317X
Shao-Qiang Ye
Sharifah Zarith Rahmah Syed Ahmad
Li-Ping Mo
Feng Qin
https://orcid.org/0000-0003-2369-145X
Pan Zhou

Abstract

Data-driven models perform poorly on part-of-speech tagging problems with the square Hmong language, a low-resource corpus. This paper designs a weight evaluation function to reduce the influence of unknown words. It proposes an improved harmony search algorithm utilizing the roulette and local evaluation strategies for handling the square Hmong part-of-speech tagging problem. The experiment shows that the average accuracy of the proposed model is 6%, 8% more than HMM and BiLSTM-CRF models, respectively. Meanwhile, the average F1 of the proposed model is also 6%, 3% more than HMM and BiLSTM-CRF models, respectively.

Article Details

How to Cite
1.
An Adaptive Harmony Search Part-of-Speech tagger for Square Hmong Corpus. Baghdad Sci.J [Internet]. 2024 Feb. 25 [cited 2025 Jan. 19];21(2(SI):0622. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/9694
Section
article

How to Cite

1.
An Adaptive Harmony Search Part-of-Speech tagger for Square Hmong Corpus. Baghdad Sci.J [Internet]. 2024 Feb. 25 [cited 2025 Jan. 19];21(2(SI):0622. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/9694

References

Liu B, Du J, Nie B, et al. Part-of-speech Tagging of Traditional Chinese Medicine Diagnosis Ancient Prose Based on Second-order HMM. Computer Engineering. 2017 Jul;43(7):211-216. Chinese. https://doi.org/10.3969/j.issn.1000-3428.2017.07.035.

Warjri S, Pakray P, Lyngdoh S A, et al. Part-of-speech (pos) tagging using conditional random field (crf) model for khasi corpora. Int. J. Speech Technol.. 2021 Jun;24(4):853-864. https://doi.org/10.1007/s10772-021-09860-w

Awwalu J, Abdullahi S E Y, Evwiekpaefe A E. Parts of speech tagging: a review of techniques. FJS. 2020 Jun;4(2):712-721. https://doi.org/10.33003/fjs-2020-0402-325

AlKhwiter W, Al-Twairesh N. Part-of-speech tagging for Arabic tweets using CRF and Bi-LSTM. Computer Speech & Language. 2021 Aug;65:101138. https://doi.org/10.1016/j.csl.2020.101138

Eskander R, Muresan S, Collins M. Unsupervised cross-lingual part-of-speech tagging for truly low-resource scenarios. Proceedings of the 2020 conference on empirical methods in natural language processing (EMNLP). 2020 Nov;4820-4831. https://doi.org/10.18653/v1/2020.emnlp-main.391

Magistry P, Ligozat A L, Rosset S. Exploiting languages proximity for part-of-speech tagging of three French regional languages. LRE. 2019 Apr;53:865-888. https://doi.org/10.1007/s10579-019-09463-7

Li H C, Mo L P, Zhou K Q. A Part-Of-Speech Tagging Approach for Chinese-Hmong Mixed Text. IOP Conference Series: Materials Science and Engineering. 2020 Feb;864(1):012064. https://doi.org/10.1088/1757-899X/864/1/012064

Heid S, Wever M, Hüllermeier E. Reliable part-of-speech tagging of historical corpora through set-valued prediction. arXiv preprint arXiv:2008.01377. 2020 Aug. https://doi.org/10.48550/arXiv.2008.01377

Geem Z W, Kim J H, Loganathan G V. A new heuristic optimization algorithm: harmony search. Simulation. 2001 Feb;76(2):60-68. https://doi.org/10.1177/00375497010760020

Qin F, Zain A M, Zhou K Q. Harmony search algorithm and related variants: A systematic review[J]. Swarm Evol. Comput. .2022: 101126. https://doi.org/10.1016/j.swevo.2022.101126

Shaqfa M, Orbán Z. Modified parameter-setting-free harmony search (PSFHS) algorithm for optimizing the design of reinforced concrete beams. Struct Multidiscipl Optim .. 2019 Mar;60:999-1019. https://doi.org/10.1007/s00158-019-02252-4

Song Y, Pan Q K, Gao L, et al. Improved non-maximum suppression for object detection using harmony search algorithm. Appl. Soft Comput.. 2019 Aug; 81:105478. https://doi.org/10.1016/j.asoc.2019.05.005

Christodoulou C A, Vita V, Seritan G C, et al. A harmony search method for the estimation of the optimum number of wind turbines in a wind farm. Energies. 2020 Jun;13(11):2777. https://doi.org/10.3390/en13112777

Mistarihi M Z, Okour R A, Magableh G M, et al. Integrating advanced harmony search with fuzzy logic for solving buffer allocation problems. Arab J Sci Eng. 2020 Jan;45:3233-3244. https://doi.org/10.1007/s13369-020-04348-2

AL-Jumaili A S. A hybrid method of linguistic and statistical features for Arabic sentiment analysis[J]. Baghdad Sci. J.2020; 17(1 (Suppl.)): 0385-0385. https://doi.org/10.21123/bsj.2020.17.1(Suppl.).0385

Kang D W, Mo L P, Wang F L, et al. Adaptive harmony search algorithm utilizing differential evolution and opposition-based learning[J]. Math Biosci Eng. 2021; 18(4): 4226-4246. https://doi.org/10.3934/mbe.2021212

WANG Zhongmiao, LIU Jun. Computing the Stationary Distribution of Absorbing Markov Chains with One Eigenvector of Diagonalizable Transition Matrices. Chinese Journal of Applied Probability And Statistics. 2020, 36(2): 123-137. https://doi.org/10.3969/j.issn.1001-4268.2020.02.002

Naif O S, Mohammed I J. WOAIP: Wireless Optimization Algorithm for Indoor Placement Based on Binary Particle Swarm Optimization (BPSO)[J]. Baghdad Sci. J.2022;19(3): 0605-0605. https://doi.org/10.21123/bsj.2022.19.3.0605