Synthesis Characterization and Adsorption of doxorubicin hydrochloride on SiO2 nanoparticle for drug delivery

Authors

  • Asmaa H. Hammadi Department of Pharmaceuticals, College of pharmacy, University of Babylon, Hilla, Iraq. https://orcid.org/0000-0003-2228-1416
  • Noor Hadi Aysa Department of Clinical and laboratory sciences, College of pharmacy, University of Babylon, Hilla, Iraq.
  • Fattima Al-Zahra Gabar Gassim Department of Pharmaceuticals, College of pharmacy, University of Babylon, Hilla, Iraq.

DOI:

https://doi.org/10.21123/bsj.2024.10048

Keywords:

Adsorption, doxorubicin, drug delivery, SiO2 nanoparticle, sol gol method

Abstract

In the present study, Tetraethyl orthosilicate (TEOS), polyethylene glycol 5%, and HCl 0.001 N are used to chemically create silica nanoparticles (SiO2 NPs). The manufacturing of nano silica-gel doxorubicin (DOX) loaded silica nanoparticles (DOX/ SiO2), which is commonly applied as part of the drug delivery systems in cancer therapy, was done using the sol-gel method. The morphology and surface content of the produced DOX/ silica loaded nanoparticles were studied using different techniques including the X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and the Fourier Transform Infra-Red (FTIR) spectroscopy spectrum. The synthesized DOX/SiO2 has a diameter of 38 nm. The isothermal adsorption follows the Freundlich isotherm and the adsorption kinetics fit to the pseudo-second order. The R2 values for the Freundlich and Langmuir models were 0.9931 and 0.9731, respectively, showing that the Freundlich isotherm tends to be more suitable with the experimental data as compared to the Langmuir model. This study aims at using nanotechnology in drug delivery. A drug delivery system is characterized as a formulation or a device that facilitates the delivery of a medicinal substance into the body, enhancing its safety and efficacy through the regulation of the rate, time, and site of drug release into the body.

References

Lin YQ, Zhang J, Liu SJ, Ye H. Doxorubicin loaded silica nanoparticles with dual modification as a tumor-targeted drug delivery system for colon cancer therapy. J Nanosci Nanotechnol. 2018; 18(4): 2330-2336.‏ https://doi.org/10.1166/jnn.2018.14391.

Shalaby TI, El-Refaie WM, El-Din R S, Hassanein SA. Smart ultrasound-triggered doxorubicin-loaded nanoliposomes with improved therapeutic response: a comparative study. J Pharm Sci.‏ 2020; 109(8): 2567-2576. https://doi.org/10.1016/j.xphs.2020.05.008.

Nguyen TN, Nguyen TT, Nghiem TH, Nguyen DT, Tran TT, Vu D, et al. Optical properties of doxorubicin hydrochloride load and release on silica nanoparticle platform. Molecules. 2021; 26(13): 3968. https://doi.org/10.3390/molecules26133968.

Chen Y, Shi S, Dai Y. Research progress of therapeutic drugs for doxorubicin-induced cardiomyopathy. Bio medi Pharm,. 2022; 156: 113903. https://doi.org/10.1016/j.biopha.2022.113903 .

Corremans R, Adão R, De Keulenaer GW, Leite Moreira AF, Brás‐Silva C. Update on pathophysiology and preventive strategies of anthracycline‐induced cardiotoxicity. Clini Pharm Phys. 2019; 46(3): 204-215.‏ https://doi.org/10.1111/1440-1681.13036.

Wence D, Lin G. Immobilized transferrin Fe3O4@ SiO2 nanoparticle with high doxorubicin loading for dual-targeted tumor drug delivery. Int J nanomedicine. 2013; 4631-4639.‏ https://doi.org/10.2147/IJN.S51745.

Munawar T, Nadeem MS, Rehman MN, Mukhtar M, Iqbal F. Sol–gel synthesis of Cu0. 9Zn0. 05M0. 05O (M= Cr, Co, Cd) nanocrystals for removal of pollutant dyes and bacterial inactivation. J Mater Sci Mater. 2012; 32(11): 14437-14455.‏ https://doi.org/10.1016/j.apt.2023.104061.

Maha AY, Baker FA. Synthesis, Characterization and Anticancer Activity of Chitosan Schiff Base/PVP Gold Nano Composite in Treating Esophageal Cancer Cell Line. Baghdad Sci J. 2024; 21(1): 0095-0095.‏https://dx.doi.org/10.21123/bsj.2023.7911.

Rafik ST, Vaidya JS, MacRobert AJ, Yaghini E. Organic Nanodelivery Systems as a New Platform in the Management of Breast Cancer: A Comprehensive Review from Preclinical to Clinical Studies. J Clin Med. 2023; 12(7): 2648.‏ https://doi.org/10.3390/jcm12072648.

Rabbani AW, Naz G, Berdimurodov E , Lal B, Sailauovna AB, Bandegharaei AH. Visible-Light-driven Photocatalytic Properties of Copper (I) Oxide (Cu2O) and Its Graphene-based Nanocomposites. Baghdad Sci J. 2023; 20(3): 1064-1064.‏ https://dx.doi.org/10.21123/bsj.2023.8476.

Munawar T, Nadeem MS, Mukhtar F, Manzoor S, Ashiq MN, Batool S. Multifunctional dual Z-scheme heterostructured Sm2O3-WO3-La2O3 nanocomposite: Enhanced electrochemical, photocatalytic, and antibacterial properties. Adv Powder Technol. 2023; 34(7): 104061.‏ https://doi.org/10.1007/s10854-021-06003-4

Gao Y, Gao D, Shen J, Wang Q. A review of mesoporous silica nanoparticle delivery systems in chemo-based combination cancer therapies. J Front chem.‏ 2020; 8: 598722. https://doi.org/10.3389/fchem.2020.598722.

Oliveira LF, Bouchmella K, Goncalves KD, Bettini J, Kobarg J, Cardoso MB. Functionalized silica nanoparticles as an alternative platform for targeted drug-delivery of water insoluble drugs. Langmuir. 2016; 32(13): 3217-3225.‏ https://doi.org/10.1021/acs.langmuir.6b00214.

Schultz HB, Kovalainen M, Peressin KF, Thomas N, Prestidge CA. Supersaturated silica-lipid hybrid oral drug delivery systems: balancing drug loading and in vivo performance. J Pharmacol Exp Ther .‏ 2019; 370(3): 742-750.‏ https://doi.org/10.1124/jpet.118.254466.

Patsos G, André S, Roeckel N, Gromes R, Gebert J, Kopitz, J, Gabius HJ. Compensation of loss of protein function in microsatellite-unstable colon cancer cells (HCT116): a gene-dependent effect on the cell surface glycan profile. Glycobiology. 2009; 19(7): 726-734.‏ https://doi.org/10.1093/glycob/cwp040.

Habeeb SA, Hammadi AH, Abed D, Al-Jibouri LF. Green synthesis of metronidazole or clindamycin-loaded hexagonal zinc oxide nanoparticles from Ziziphus extracts and its antibacterial activity. Pharmacia. 2020; 69(3): 855-864.‏ https://doi.org/10.3897/pharmacia.69.e91057.

Trushina DB, Sapach AY, Burachevskaia OA, Medvedev PV, Khmelenin DN, Borodina TN, et al. Doxorubicin-loaded core–shell UiO-66@ SiO2 metal–organic frameworks for targeted cellular uptake and cancer treatment. Pharmaceutics. 2022; 14(7): 1325.‏ https://doi.org/10.3390/pharmaceutics14071325.

Li X, Zhang X, Zhao Y, Sun L. Fabrication of biodegradable Mn-doped mesoporous silica nanoparticles for pH/redox dual response drug delivery. J Inorg Bio Chem. 2020; 202: 110887.‏ https://doi.org/10.1016/j.jinorgbio.2019.110887.

Nassar MY, El-Salhy HI, El-Shiwiny WH, Abdelaziz G, El-Shiekh R. Composite nanoarchitectonics of magnetic silicon dioxide-modified chitosan for doxorubicin delivery and in vitro cytotoxicity assay. J Inorg Organomet Polym Mater. 2023; 33(1): 237-253.‏ https://doi.org/10.1007/s10904-022-02498-4.

Liu RX, Hao XJ, Zhang HJ, Zhang L, Gui XJ, Lin Z, et al. A rapid identification of authenticity and specifications of Chinese medicine Fritillariae Cirrhosae Bulbus based on E-eye technology. J Chin Mater Medica. 2020; 45(14): 3441-3451.‏ https://doi.org/10.19540/j.cnki.cjcmm.20200601.301.

Leila V, Parviz R, Fatemeh D. Cladosporium protease/doxorubicin decorated Fe3O4@ SiO2 nanocomposite: An efficient nanoparticle for drug delivery and combating breast cancer. J Drug Deliv Sci Technol. 2023; 80: 104144.‏ https://doi.org/10.1016/j.jddst.2022.104144.

Ji L, Zheng H, Li S, Li D, Gao Q, Yang J. Doxorubicin-loaded Mn-doped SiO2 nanospheres coated with carboxymethyl chitosan: fabrication, characterization, and in vitro evaluation. J Chem Res. 2022; 46(4): 114617. https://doi.org/10.1177/17475198221114617.

Kovrigina E, Poletaeva Y, Zheng Y, Chubarov A, Dmitrienko E .Nylon-6-coated doxorubicin-loaded magnetic nanoparticles and nanocapsules for cancer treatment. Magnetochemistry. 2023; 9(4): 106.‏ https://doi.org/10.3390/magnetochemistry9040106.

Bosetti R, Vereeck L. The impact of effective patents on future innovations in nanomedicine. Pharm Pat Anal. 2012; 1(1): 37-43.‏ https://doi.org/10.4155/ppa.11.4.

Miguel G, Miguel M, María V. Mesoporous silica nanoparticles for the treatment of complex bone diseases: Bone cancer, bone infection and osteoporosis. Pharmaceutics. 2020; 12(1): 83.‏ https://doi.org/10.3390/pharmaceutics12010083.

Yang S, Li N, Chen D, Qi X, Xu Y, Xu Y, et al. Visible-light degradable polymer coated hollow mesoporous silica nanoparticles for controlled drug release and cell imaging. J Mater Chem B, 2013; 1(36): 4628-4636. https://doi.org/10.1039/C3TB20609B.

Noor HY, Ahmed ES. Green nanocomposites: Magical solution for environmental pollution problems. Advances in Nanocomposite Materials for Environmental and Energy Harvesting Applications. Springer International Publishing 2022; 389-417. https://doi.org/10.1007/978-3-030-94319-6_13.

Hendry IE. Nanomedicine with Its Multitasking Applications: A View for Better Health. IJHMCR, 2017; 2(2): 353-357.‏ https://doi.org/10.22301/IJHMCR.2528-3189.353.

Ranathunge TA, Karunaratne DG, Rajapakse RM, Watkins DL. Doxorubicin loaded magnesium oxide nanoflakes as pH dependent carriers for simultaneous treatment of cancer and hypomagnesemia. Nanomaterials. 2019; 9(2): 2-11.‏ https://doi.org/10.3390/nano9020208.

Supardi ZA, Nisa Z, Kusumawati DH, Putri NP, Taufiq A, Hidayat N. Phase transition of SiO2 nanoparticles prepared from natural sand: the calcination temperature effect. J Phys: Conf Ser. 2018; 012025.‏ https://doi.org/.1088/1742-6596/1093/1/012025.

Nariyal RK, Kothari P, Bisht B. FTIR measurements of SiO2 glass prepared by sol-gel technique. Chem Sci Trans. 2014; 3(3): 1064-1066.‏ https://doi.org/10.7598/cst2014.816.

Zainuri M. Synthesis of SiO nanopowders containing quartz and cristobalite phases from silica sands. Mater Sci-Poland. 2015; 33(1): 47-55.‏ https://doi.org/10.1515/msp-2015-0008.

Ebadi M, Buskaran K, Bullo S, Hussein MZ, Fakurazi S, Pastorin G. Drug delivery system based on magnetic iron oxide nanoparticles coated with (polyvinyl alcohol-zinc/aluminium-layered double hydroxide-sorafenib). Alex Eng J. 2021; 60(1): 733-747.‏ https://doi.org/10.1016/j.aej.2020.09.061.

Cai W , Guo M, Weng X, Zhang W, Chen Z. Adsorption of doxorubicin hydrochloride on glutaric anhydride functionalized Fe3O4@ SiO2 magnetic nanoparticles. Mater Sci Eng: C. 2019; 98: 65-73.‏ https://doi.org/10.1016/j.msec.2018.12.145.

Hammadi AH, Assi LN, Hussien, FH. Drug Loading on Carbon Nanotubes synthesized by Flame Fragments Deposition Technique. Sys Rev Pharm. 2020; 11(3).‏ http://dx.doi.org/10.5530/srp.2019.2.04.

Ali AS, Fadhil JF, Fulla AA. Green Synthesis of Silver Nanoparticles Using Aqueous Extract of Typha domingensis Pers. Pollen (qurraid) and Evaluate its Antibacterial Activity. Baghdad Sci J. 2024; 21(1): 0028-0028. https://dx.doi.org/10.21123/bsj.2023.

Cai, W, Guo M, Weng X, Zhang W, Owens G, Chen Z. Modified green synthesis of Fe3O4@ SiO2 nanoparticles for pH responsive drug release. Mater Sci Eng: C. 2020; 112: 110900. https://doi.org/10.1016/j.msec.2020.110900.

Purcar V, Rădițoiu V, Rădițoiu A, Manea R, Raduly FM. Ispas GC, et al. Preparation and characterization of some sol-gel modified silica coatings deposited on polyvinyl chloride (PVC) substrates. Coatings. 2020; 11(1): 2-13.‏ https://doi.org/10.3390/coatings11010011.

Nguyen TN, Nguyen TT, Nghiem TH, Nguyen DT, Tran, T. T, Vu D, et al. Optical properties of doxorubicin hydrochloride load and release on silica nanoparticle platform. Molecules. 2021; 26(13): 3968.‏ https://doi.org/10.3390/molecules26133968.

Nadiia VR, Lyudmila AB, Marina OD. Adsorption of antitumor antibiotic doxorubicin on MCM-41-type silica surface. Adsorpt Sci Technol. 2017; 35(1): 86-101.‏ https://doi.org/10.1177/0263617416669504.

Munawar T, Yasmeen S, Hussain F, Mahmood K, Hussain A, Asghar M, et al. Synthesis of novel heterostructured ZnO-CdO-CuO nanocomposite: characterization and enhanced sunlight driven photocatalytic activity. Mater Chem Phys. 2020; 249: 122983.https://doi.org/10.1016/j.matchemphys.2020.122983

Lei Y, Yong ML. The adsorption mechanism of anionic and cationic dyes by Jerusalem artichoke stalk-based mesoporous activated carbon. J Environ Chem Eng. 2014; 2(1): 220-229. https://doi.org/10.1016/j.jece.2013.12.016.

Hania A, Hazim Q, Muftah H. Comparative study between adsorption and membrane technologies for the removal of mercury. Sep Purif. Technol. 2021; 257: 117833.‏ https://doi.org/10.1016/j.seppur.2020.117833.

Downloads

Issue

Section

article

How to Cite

1.
Synthesis Characterization and Adsorption of doxorubicin hydrochloride on SiO2 nanoparticle for drug delivery. Baghdad Sci.J [Internet]. [cited 2025 Jan. 22];22(2). Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/10048