Optimization of wood vinegar from cacao pod shells by response surface methodology

Authors

  • Hera Desvita Research Center for Chemistry, Indonesian Institute of Sciences-National Research and Innovation Agency, Kawasan Puspitek Serpong, Tangerang Selatan, Banten 15314, Indonesia/Department of Chemical Engineering, Faculty of Engineering, Universitas Syiah Kuala, Banda Aceh, Indonesia. https://orcid.org/0000-0002-9780-2119
  • Muhammad Faisal Department of Chemical Engineering, Faculty of Engineering, Universitas Syiah Kuala, Banda Aceh, Indonesia/ Center for Sustainable Agricultural and Rural Development, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia/ Halal Research Center, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia. https://orcid.org/0000-0001-5199-3477
  • Mahidin Department of Chemical Engineering, Faculty of Engineering, Universitas Syiah Kuala, Banda Aceh, Indonesia.
  • Suhendrayatna Department of Chemical Engineering, Faculty of Engineering, Universitas Syiah Kuala, Banda Aceh, Indonesia.

DOI:

https://doi.org/10.21123/bsj.2024.10695

Keywords:

Cacao pod shells, Optimization, Pyrolysis, RSM, Wood vinegar.

Abstract

The purpose of this study is to find the optimal conditions for producing wood vinegar from cacao pod shells using Response Surface Methodology (RSM). Box Behnken Design (BBD) was used to optimize the variables of pyrolysis times, temperature, and particle size. Wood vinegar was prepared by slow pyrolysis technology. The RSM with three design variables including pyrolysis duration at 50, 75, and 100 minutes; pyrolysis temperatures at 300°C, 340°C, and 380°C; and particle size of 3, 5 and 7 cm with 15 runs were applied. Chemical characterization of wood vinegar was performed by Gas Chromatography-Mass Spectrometry (GC-MS) analysis. The results showed that phenolic, furan, and ketone compounds were the main component in the cacao pod shells vinegar. The optimum production of wood vinegar from cacao pod shells based on RSM results was identified at a pyrolysis time of 100 minutes, a temperature of 353°C, and a particle size of 3 cm.

References

Sukorini H, Aigahayunindy FW, Septia ED, Khewkhom N. Exploration and effectiveness of trichoderma sp. From Jember and Trenggalek, East Java, Indonesia cacao plantation as a biological control of phytophthora palmivora. E3S Web Conf. 2021; 226. https://doi.org/10.1051/e3sconf/202122600022.

Rojo-Poveda O, Barbosa-Pereira L, Zeppa G, Stévigny C. Cocoa Bean Shell—A By-Product with Nutritional Properties and Biofunctional Potential. Nutrients. 2020; 12(4): 1123.https://doi.org/10.3390/nu12041123.

Rincón-Quintero AD, Del Portillo-Valdés LA, Cárdenas-Arias CG, Tarazona-Romero BE, Rondón-Romero WL, Durán-Sarmiento MA. A bibliometric Analysis Of The Uses Of The Cocoa Pod Shell. IOP Conf Ser Mater Sci Eng. 2021; 1154(1): 012032.https://doi:10.1088/1757-899X/1154/1/012032.

Younes A, Karboune S, Liu L, Andreani ES, Dahman S. Extraction and Characterization Of Cocoa Bean Shell Cell Wall Polysaccharides. Polymers. 2023; 15(3): 745.https://doi.org/10.3390/polym1503074.

Djali M, Kayaputri IL, Kurniati D, Sukarminah E, Mudjenan IMH, Utama GL. Degradation of Lignocelluloses Cocoa Shell (Theobroma cacao L.) by Various Types Of Mould Treatments. J Food Qual. 2021; 2021: 1-8. https://doi.org/10.1155/2021/6127029.

Sarmiento-Vásquez Z, Vandenberghe L, Rodrigues C, Tanobe VOA, Marín O, de Melo Pereira GV, et al. Cocoa Pod Husk Valorization: Alkaline-Enzymatic Pre-Treatment For Propionic Acid Production. Cellulose. 2021; 28: 4009-4024.https://doi.org/10.1007/s10570-021-03770-5.

Oduro-Mensah D, Ocloo A, Nortey T, Antwi S, Okine LK, Adamafi NA. Nutritional Value And Safety Of Animal Feed Supplemented with Talaromyces Verruculosus-Treated Cocoa Pod Husks. Sci Rep. 2020; 10(1): 13163. https://doi.org/10.1016/j.esd.2022.12.007.

Dutra JDCF, Passos MF, García GJY, Gomes RF, Magalhães TA, dos Santos FA, et al. Anaerobic Digestion Using Cocoa Residues As Substrate: Systematic Review And Meta-Analysis. Energy Sustain Dev. 2023. 72: 265-277.https://doi.org/10.1016/j.esd.2022.12.007.

Dahunsi SO, Adesulu-Dahunsi AT, Izebere JO. Cleaner Energy Through Liquefaction of Cocoa (Theobroma cacao) Pod Husk: Pretreatment and process optimization. J Clean Prod. 2019; 226: 578-588. https://doi.org/10.1016/j.jclepro.2019.04.112.

Desvita H, Faisal M, Mahidin, Suhendrayatna. Characteristic of liquid smoke produced from slow pyrolysis of cacao pod shells (Theobroma cacao L). Int J GEOMATE. 2021. 20(80): 17-22. https://doi.org/10.21660/2021.80.6154.

Anokye R, Boadu KB, Fianko CN, Amegashiti, VB. (2024). The chemical composition of Savannah bamboo (Oxytenanthera abyssinica) vinegar at varying pyrolysis temperatures and its termiticidal activity against wood-feeding termites. Adv. Bamboo Sci. 2024; 6: 1-7. https://doi.org/10.1016/j.bamboo.2024.100063

Surboyo MDC, Arundina I, Rahayu RP, Mansur D, Bramantoro T. Potential of Distilled Liquid Smoke Derived From Coconut (Cocos nucifera L) shell for traumatic ulcer healing in diabetic Rats. Eur J Dent. 2019; 13(02): 271-279. https://doi.org/10.1055/s-0039-1693527

Rahmasari Y, Yemiş GP. Characterization of Ginger Starch-Based Edible Films Incorporated With Coconut Shell Liquid Smoke By Ultrasound Treatment And Application For Ground Beef. Meat Sci. 2022; 188: 108799. https://doi.org/10.1016/j.meatsci.2022.108799.

Chantanumat Y, Phetwarotai W, Sangthong S, Palamanit A, Abu Bakar MS, et al. Characterization of bio-oil and biochar from slow pyrolysis of oil palm plantation and palm oil mill wastes. Biomass Convers Biorefin. 2023; 13(15): 13813-13825.https://doi.org/10.1007/s13399-021-02291-2.

Adiningsih Y, Priatni A. Characterization of Rubber Shell Liquid Smoke at Various Pyrolysis Temperatures and the Application to Latex Coagulant. In Joint Symposium on Tropical Studies, Atlantis Press, (JSTS-19). 2021; 423-428.https://doi.org/10.2991/absr.k.210408.070.

Mansur D, Sugiwati S, Rizal WA, Suryani R, Maryana R. Pyrolysis of Cajuput (Melaleuca leucadendron) Twigs And Rice (Oryza Sativa) Husks To Produce Liquid Smoke-Containing Fine Chemicals For Antibacterial Agent Application. Biomass Convers Biorefin. 2023; 13(12), 10561-10574. https://doi.org/10.1007/s13399-021-01896-x.

Arundina I, Frimayanti N, Surboyo MD, Budhy TI, Iskandar B, Pradana A, et al. In Silico Study of Liquid Smoke Rice Husk against COVID-19. Eur J Dent. 2023; 17(02): 492-496. https://doi.org/10.1055/s-0042-1750776.

Triawan DA, Nasution AV, Sutanto TD, Nesbah N, Widiyati E, Adfa M, Banon C, Nurwidiyani R. Preparation and Characterization of Liquid Smoke from Wood Sawdust Azadirachta excelsa (Jack) M. Jacobs and its Application as a Natural Rubber Coagulant. In IOP Conference Series: Earth and Environmental Science.2022; 1108 (1): 012052. https://doi.org/10.1088/1755-1315/1108/1/012052.

Oramahi HA, Yoshimura T, Rusmiyanto E, Kustiati K. Optimization and Characterization Of Wood Vinegar Produced By Shorea Laevis Ridl Wood Pyrolysis. Indones. J Chem. 2020; 20(4): 825-832. https://doi.org/10.22146/ijc.45783.

Xin X, Dell K, Udugama IA, Young BR, Baroutian S. Transforming Biomass Pyrolysis Technologies To Produce Liquid Smoke Food Flavouring. J Clean Prod. 2021; 294: 125368.https://doi.org/10.1016/j.jclepro.2020.125368.

Doti B, Nyaanga DM, Nyakach S, Nyaanga J. Optimization Of Pyrolysis Parameters In Production Of Pyroligneous Acid From Acacia Twigs. J. energy environ. Chem Eng. 2022; 8(1): 1-13. https://doi.org/10.37017/jeae-volume8-no1.2022-1.

Ahmed AW, Atiya MA, M-Ridha MJ. Treatment of Dairy Wastewater by Electrocoagulation using Iron Filings Electrodes. Baghdad Sci J. 2023; 20(3): 1027-1027.https://dx.doi.org/10.21123/bsj.2023.7987.

Faisal M, Kamaruzzaman S, Desvita H, Annisa D, Zahara C. Response Surface Methodology For Optimization Of Liquid Smoke Production Yield From Durian Rinds (Durio zibethinus Murr.). Mater Today: Proceedings. 2023; 87: 187-191.https://doi.org/10.1016/j.matpr.2023.02.395.

Hougni DGJ, Schut AG, Woittiez LS, Vanlauwe B, Giller KE. How Nutrient Rich Are Decaying Cocoa Pod Husks? The Kinetics Of Nutrient Leaching. Plant Soil. 2021; 463: 155-170.https://doi.org/10.1007/s11104-021-04885-1.

Lu X, Han T, Jiang J, Sun K, Sun Y, Yang W. Comprehensive Insights Into The Influences Of Acid-Base Properties Of Chemical Pretreatment Reagents On Biomass Pyrolysis Behavior And Wood Vinegar Properties. J Anal Appl Pyrolysis. 2020; 151: 104907.https://doi.org/10.1016/j.jaap.2020.104907.

Oramahi HA, Wardoyo ERP. Optimization of liquid smoke from Shorea pachyphylla using response surface methodology and its characterization. Sci Technol Indones. 2022; 7(2): 257-262. https://doi.org/10.26554/sti.2022.7.2.257-262.

Xu L, Yu J, Wang W, Wan G, Lin L, et al. Upgrading and PAHs formation during used lubricant oil pyrolysis at different heating modes. J Anal Appl Pyrolysis. 2023; 169: 105813. https://doi.org/10.1016/j.jaap.2022.105813

Pratap B, Mondal S, Rao, BH. Prediction of Compressive Strength Of Bauxite Residue-Based Geopolymer Mortar As Pavement Composite Materials: An integrated ANN and RSM approach. Asian J Civ Eng. 2024; 25(1): 597-607.https://doi.org/10.1007/s42107-023-00797-w

Mada T, Duraisamy R, Guesh F. Optimization and Characterization Of Pectin Extracted From Banana And Papaya Mixed Peels Using Response Surface Methodology. Food Sci Nutr. 2022; 10(4): 1222-1238. https://doi.org/10.1002/fsn3.2754.

Chouaibi M, Daoued K B, Riguane K, Rouissi T, Ferrari G. Production Of Bioethanol From Pumpkin Peel Wastes: Comparison Between Response Surface Methodology (RSM) and Artificial Neural Networks (ANN). Ind Crops Prod. 2020; 155: 112822.https://doi.org/10.1016/j.indcrop.2020.112822.

Kusuma HS, Amenaghawon AN, Darmokoesoemo H, Neolaka YA, Widyaningrum BA, Anyalewechi CL, et al. Evaluation of Extract Of Ipomoea Batatas Leaves As A Green Coagulant–Flocculant For Turbid Water Treatment: Parametric Modelling And Optimization Using Response Surface Methodology And Artificial Neural Networks. Environ Technol Innov. 2021; 24: 102005.https://doi.org/10.1016/j.eti.2021.102005.

Wyantuti S, Setyorini Z, Ishmayana S, Hartati Y, Firdaus M. Optimization of Voltammetric Determination of Dysprosium (III) Using Plackett-Burman and RSM-CCD Experimental Designs. Baghdad Sci J. 2020; 17(4), 1198-1198.https://doi.org/10.21123/bsj.2020.17.4.1198.

Andrade C. The P Value And Statistical Significance: Misunderstandings, Explanations, Challenges, And Alternatives. Indian J Psychol Med. 2019; 41(3): 210-215.https://doi.org/10.4103/IJPSYM.IJPSYM_193_19.

Rafiq W, Napiah M, Habib N Z, Sutanto M H, Alaloul Wesam, Imran Khan Muhammad, et al. Modeling and Design Optimization of Reclaimed Asphalt Pavement Containing Crude Palm Oil Using Response Surface Methodology. Constr Build Mater. 2021; 291: 123288.https://doi.org/10.1016/j.conbuildmat.2021.123288.

Downloads

Issue

Section

article

How to Cite

1.
Optimization of wood vinegar from cacao pod shells by response surface methodology. Baghdad Sci.J [Internet]. [cited 2025 Jan. 26];22(4). Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/10695