Thioflavin T Production in Coelastrella saipanensis LC752948.1: Impact of Sodium Chloride, growth phases, and their effect on growth parameters
DOI:
https://doi.org/10.21123/bsj.2024.10737Keywords:
C. saipanensis. , Growth rate, NaCl, Thioflavin T., Proline.Abstract
The present study aimed to investigate the possible production of Thioflavin T and the effect of NaCl concentrations and growth phases on the growth rate, doubling time and proline of C. saipanensis N. Hanagata (Scenedesmaceae, Shaerophleales). The alga was cultured in BG 11 medium and six NaCl concentrations were used in the experiments during different growth phases. The results have unveiled the presence of Triflavin T in the alga. The study results showed a growth rate decrease at all NaCl concentrations except in control treatment, while the doubling time, was recorded highest value (14 days) at the NaCl concentration of 0.08 M. The highest value of Proline (0.509 mg. Lˉ¹) was recorded at the treatment of 0.08 M of NaCl and recorded 0.3 mg. L-1 in the second phase of alga growth, and increased up to 0.695 mg. L-1in the interaction between NaCl concentrations and growth phases (0.08 M of NaCl and the second phase). The highest value of Thioflavin T (25.386 mg. Lˉ¹) was recorded at 0.005 M of NaCl and 21.937 mg. L-1 at the second phase of growth. While its concentration reaches 27. 335mg.L- in combined experiments (0.005 M of NaCl and the second phase of growth). Therefore, the results of this study unveiled the presence of Thioflavin T pigment in C. saipanensis. The NaCl concentrations and growth phases have an impact on the pigment and proline concentrations. This finding highlights the possible use of the alga to produce the Thioflavin T pigment for different purposes.
Received 21/01/2024
Revised 19/02/2024
Accepted 21/02/2024
Published Online First 20 /06/2024
References
Barera S, Forlani G. The role of proline in the adaptation of eukaryotic microalgae to environmental stress: An underestimated tool for the optimization of algal growth. J Appl Phycol. 2023 Jun 24; 35(4): 1635–48. https://doi.org/10.1007/s10811-023-03017-9
Krienitz L, Krienitz L. The Algae. Lesser Flamingos: Descendants of Phoenix. 2018:19-36. https://doi.org/10.1007/978-3-662-58163-6_2
AL-Rawi A, Hassan FM, Alwash BM. In Vitro Stiumlation of Ergosterol from Coelastrella Terrestris by Using Squalene and Studying Antioxidant Effect. Sys Rev Pharm. 2020 Nov 1; 11(11).
Vidya D, Nayana K, Sreelakshmi M, Keerthi KV, Mohan KS, Sudhakar MP, et al. A sustainable cultivation of microalgae using dairy and fish wastes for enhanced biomass and bio-product production. Biomass Convers. Biorefin. 2021 Aug 17: 1-5. https://doi.org/10.1007/s13399-021-01817-y
Luo L, He H, Yang C, Wen S, Zeng G, Wu M, et al. Nutrient removal and lipid production by Coelastrella sp. in anaerobically and aerobically treated swine wastewater. Bioresour Technol. 2016 Sep 1; 216: 135-41. https://doi.org/10.1016/j.biortech.2016.05.059
Iyer G, Nagle V, Gupte YV, Desai S, Iyer M, Moramkar N, et al. Characterization of high carotenoid producing Coelastrella oocystiformis and its anti-cancer potential. Int J Curr Microbiol Appl Sci. 2015; 4(10): 527-36.
Rashad S, A El-Chaghaby G, A Elchaghaby M. Antibacterial activity of silver nanoparticles biosynthesized using Spirulina platensis microalgae extract against oral pathogens. Egypt J Aquat Biol Fish. 2019 Dec 23; 23(5 (Special Issue)): 261-6. https://dx.doi.org/10.21608/ejabf.2019.65907
Kaufnerová V, Eliáš M. The demise of the genus Scotiellopsis Vinatzer (Chlorophyta). Nova Hedwig. 2013 Nov 1; 97(3-4): 415-28. https://doi.org/10.1127/0029-5035/2013/0116
Abed IJ, Abdulhasan GA, Najem AM. Genotype versus phenotype to determine the definitive identification of the genera Chlorella beijerinck, 1890 (chlorellaceae) and Coelastrella chodat, 1922 (scendesmaceae). Bull Iraq Nat Hist Mus. 2018 Jul 1; 15(1): 101-11. http://dx.doi.org/10.26842/binhm.7.2018.15.1.0101
Al-rawi, A. Alwash BM J, Al-Essa NE, Hassan FM. A New Record Of coelastrella terrestris (reisigl) hegewald & n. Hanagata, 2002 (sphaeropleales, scenedesmaceae) in iraq. Bull Iraq Nat Hist Mus. 2018 Dec; 15(2): 153-61. http://dx.doi.org/10.26842/binhm.7.2018.15.2.0153
Toma JJ, Aziz FH. Antibacterial activity of three algal genera against some pathogenic bacteria. Baghdad Sci J. 2023 Feb 1; 20(1): 0032. https://doi.org/10.21123/bsj.2022.6818
Qader MQ, Shekha YA. Using microalga Coelastrella sp. to remove some nutrients from wastewater invitro. Baghdad Sci J. 2023. 20(4): 1218-1227. https://doi.org/10.21123/bsj.2023.7457
Nayana K, Vidya D, Soorya K, Dineshan A, Menon AS, Mambad R, et al. Effect of Volume and Surface Area on Growth and Productivity of Microalgae in Culture System. Bioenergy Res. 2023 Jun; 16(2): 1013-25. https://doi.org/10.1007/s12155-022-10498-y
Baenas N, García-Viguera C, Moreno DA. Elicitation: a tool for enriching the bioactive composition of foods. Molecules. 2014 Sep 1; 19(9): 13541-63. https://doi.org/10.3390/molecules190913541
Gorelick J, Bernstein N. Elicitation: an underutilized tool in the development of medicinal plants as a source of therapeutic secondary metabolites. Adv Agron. 2014 Jan 1; 124: 201-30. https://doi.org/10.1016/B978-0-12-800138-7.00005-X
Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A. Role of proline under changing environments: a review. Plant Signal Behav. 2012 Nov 1; 7(11): 1456-66. https://doi.org/10.4161/psb.21949
Korzeniowska K, Łęska B, Wieczorek PP. Isolation and determination of phenolic compounds from freshwater Cladophora glomerata. Algal Res. 2020 Jun 1; 48: 101912. https://doi.org/10.1016/j.algal.2020.101912
Ramawat KG, Mérillon JM. Bioactive molecules and medicinal plants. Berlin: Springer; 2008 Oct 16. https://doi.org/10.1007/978-3-540-74603-4
Machu L, Misurcova L, Vavra Ambrozova J, Orsavova J, Mlcek J, Sochor J, et al. Phenolic content and antioxidant capacity in algal food products. Molecules. 2015 Jan 12; 20(1): 1118-33. https://doi.org/10.3390/molecules20011118
Jung SJ, Park YD, Park JH, Yang SD, Hur MG, Yu KH. Synthesis and evaluation of thioflavin-T analogs as potential imaging agents for amyloid plaques. Med Chem Res. 2013 Sep; 22: 4263-8. https://doi.org/10.1007/s00044-012-0414-2
PS V, CF C. Fluorescent stains, with special reference to amyloid and connective tissues. Arch Path. 1959 Nov 1; 68: 487-98.
Saeed SM, Fine G. Thioflavin-T for amyloid detection. Am J Clin Pathol. 1967 May 1; 47(5): 588-93. https://doi.org/10.1093/ajcp/47.5.588
Younan ND, Viles JH. A comparison of three fluorophores for the detection of amyloid fibers and prefibrillar oligomeric assemblies. ThT (thioflavin T); ANS (1-anilinonaphthalene-8-sulfonic acid); and bisANS (4, 4′-dianilino-1, 1′-binaphthyl-5, 5′-disulfonic acid). Biochem. 2015 Jul 21; 54(28): 4297-306. https://doi.org/10.1021/acs.biochem.5b00309
Stremski, Y. Statkova-Abeghe S. Ivanova A. Angelov P. Ivanov I. Structural analogues of Thioflavin T - New synthetic approach. J Int Sci Publ. 2019; 13: 118-127.
Qin L. Acids: Novel Perfluorinated Aromatic Amino Acids: Synthesis and Applications (II) Thioflavin T Dimers as Novel Amyloid Ligands. Doctoral dissertation, Boston College. Graduate School of Arts and Sciences. 2012, pp214.
Salman AD, Sadeq SM. Effect of spraying co2 and amino acid solutions on the proline content and total Yield of cherry tomatoes under field and protected cultivation. Zagazig J Agric Res. 2017; 44(4): 1217- 1236.
DaMatta FM, Grandis A, Arenque BC, Buckeridge MS. Impacts of climate changes on crop physiology and food quality. Food Res Int. 2010 Aug 1; 43(7): 1814-23. https://doi.org/10.1016/j.foodres.2009.11.001
Huang X H, Li C L, Liu C W, Zeng D Q. Studies on the ecological factors of Oocystis borgei. J Zhanjiang Ocean Univ. 2002a; 22(3): 8-12. (In Chinese). https://doi.org/10.3969/j.issn.1673-9159.2002.03.003
Huang X H, Li CL, Liu CW, Wang ZD, Chen JJ: Studies on the N and P nutrient demand in Nannochloropsis oculata. Mar Sci (Chinese) 2002b, 26: 13–17.
Sandhya M. Thin layer chromatography and high pressure liquid chromatography profiling of plant extracts of Viola odorata Linn. Int J Pharma Bio Sci . 2013; 4(1): B-542-B-549. http://doi.org/10.22376/ijpbs
Marín Velázquez JA, Andreu Puyal P, Carrasco Miral A, Arbeloa Matute A. Determination of proline concentration, an abiotic stress marker, in root exudates of excised root cultures of fruit tree rootstocks under salt stress. Revue des Régions Arides – Numéro spécial – 24 (2/2010) Actes du 3ème Meeting International ‘’Aridoculture et Cultures Oasisennes : Gestion et Valorisation des Ressources et Applications Biotechnologiques dans les Agrosystèmes Arides et Sahariens’’Jerba (Tunisie) 15-16-17/12/2009.
Radovanović B, Mladenović J, Radovanović A, Pavlović R, Nikolić V. Phenolic composition, antioxidant, antimicrobial and cytotoxic activites of Allium porrum L. (Serbia) extracts. J Food Nutr Res. 2015; 3(9): 564-9. https://doi.org/10.12691/jfnr-3-9-1
Zuo Z, Chen Z, Zhu Y, Bai Y, Wang Y. Effects of NaCl and Na 2 CO 3 stresses on photosynthetic ability of Chlamydomonas reinhardtii. Biologia. 2014 Oct; 69: 1314-22. https://doi.org/10.2478/s11756-014-0437-x
Ishika T, Bahri PA, Laird DW, Moheimani NR. The effect of gradual increase in salinity on the biomass productivity and biochemical composition of several marine, halotolerant, and halophilic microalgae. J Appl Phycol. 2018 Jun; 30: 1453-64. https://doi.org/10.1007/s10811-017-1377-y
Zhila NO, Kalacheva GS, Volova TG. Effect of salinity on the biochemical composition of the alga Botryococcus braunii Kütz IPPAS H-252. J Appl Phycol. 2011 Feb; 23: 47-52. https://doi.org/10.1007/s10811-010-9532-8
Annamalai J, Shanmugam J, Nallamuthu T. Salt stress enhancing the production of Phytochemicals in Chlorella vulgaris and Chlamydomonas reinhardtii. J A. J Algal Biomass Utln. 2016; 7(1): 37-44.
Salman JM, Majrashi N, Hassan FM, Al-Sabri A, Jabar EA, Ameen F. Cultivation of blue green algae (Arthrospira platensis Gomont, 1892) in wastewater for biodiesel production. Chemosphere. 2023 Jun 2:139107. https://doi.org/10.1016/j.chemosphere.2023.139107
Salman JM, Grmasha RA, Stenger-Kovács C, Lengyel E, Al-Sareji OJ, Al-Cheban AM, et al. Influence of magnesium concentrations on the biomass and biochemical variations in the freshwater algae, Chlorella vulgaris. Heliyon. 2023 Jan 1; 9(1):1-12. https://doi.org/10.1016/j.heliyon.2023.e13072
Wang T, Chen Y, Zhang M, Chen J, Liu J, Han H, et al. Arabidopsis Amino Acid Permease1 contributes to salt stress-induced proline uptake from exogenous sources. Front Plant Sci. 2017 Dec 22; 8: 1-12. https://doi.org/10.3389/fpls.2017.02182
Dmitrieva OA, Fedotova MV, Buchner R. Evidence for cooperative Na+ and Cl− binding by strongly hydrated L-proline. Phys Chem Chem Phys. 2017; 19(31): 20474-83. https://doi.org/10.1039/C7CP04335J
Tian L, Zhang Z, Wang Z, Zhang P, Xiong C, Kuang Y, et al. Compositional variations in algal organic matter during distinct growth phases in karst water. Front Environ Sci. 2023 Feb 10; 11: 1112522. https://doi.org/10.3389/fenvs.2023.1112522
Ghosh UK, Islam MN, Siddiqui MN, Cao X, Khan MA. Proline, a multifaceted signalling molecule in plant responses to abiotic stress: understanding the physiological mechanisms. Plant Biol. 2022 Mar; 24(2): 227-39. https://doi.org/10.1111/plb.13363
Ahmad SD. Dina YM. Adel HA, Siham NL. Anti-dermatophytes activity of Macroalgal extracts (Chara vulgaris) isolated from Baghdad City-Iraq. J Glob Pharma Technol. 2018. 10(03): 759-766.
Chen Y, Lin F, Yang H, Yue L, Hu F, Wang J, et al. Effect of varying NaCl doses on flavonoid production in suspension cells of Ginkgo biloba: relationship to chlorophyll fluorescence, ion homeostasis, antioxidant system and ultrastructure. Acta Physiol Plant. 2014 Dec; 36: 3173-87. https://doi.org/10.1007/s11738-014-1684-8
Tiwari S, Dhakal N. Analysis of Variations in Biomolecules during Various Growth Phases of Freshwater Microalgae Chlorella sp. APPLI Appl Food Biotechnol. 2023; 10 (1): 73-84. http://dx.doi.org/10.22037/afb.v10i1.39796
Downloads
Issue
Section
License
Copyright (c) 2024 Zeina Gany Fadeel, Muthana M.I. Al-Mahdawe, Fikrat M. Hassan
This work is licensed under a Creative Commons Attribution 4.0 International License.