Effect of Chemically synthesis compared to biosynthesized zinc oxide nanoparticles using extract of Vitex agnus on the expression of MexAB-OprM efflux pump genes of Multi-Drug Resistance Pseudomonas aeruginosa
Main Article Content
Abstract
The current study's goal was to find out how the expression of the efflux pump genes (MexAB-OprM) in MDR P. aeruginosa isolates was influenced by chemically manufactured Zinc Oxide Nanoparticles using sol-gel method as compared to biosynthesized Zinc Oxide Nanoparticles using Vitex agnus-castus leaves extract. PCR analysis was used to confirmthe the presence of 16S rRNA gene in all 16 P. aeruginosa isolates The findings indicated that P. aeruginosa tested positive for 16S rRNA (100%), and 7 (43.75%) of the isolates were MDR. All MDR isolates carried MexA, MexB and OprM genes.The Vitex extract's GC-MS analysis exposed the existence of active chemicals. The size of the synthesized Zinc Oxide Nanoparticles ranged from 22 to 74 nm. The Minimum inhibitory concentration values for chemically synthesized NPs, biosynthesized NPs, and Vitex extract against concentrations were 1024, 256, and 512 μg/mL, respectively, when tested against MDR isolates. Biosynthesized Zinc Oxide Nanoparticles have a greater inhibitory effect on efflux pump genes than chemically synthesized Zinc Oxide Nanoparticles and Vitex extract in the expression of MexA, MexB, and OprM genes in samples treated with sub MIC of Zinc Oxide Nanoparticles and plant extract compared to non-treated samples. One way that nanoparticles work against bacteria is by suppressing the expression of the efflux pump genes, which lowers the number of active efflux pumps on the cell surface. As a result, Zinc Oxide Nanoparticles are regarded by the pharmaceutical sector as a potential medicinal option
Received 17/02/2024
Revised 31/05/2024
Accepted 02/04/2024
Published Online First 20/06/2024
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
References
Shehab ZH, Ahmed ST, Abdallah NM. Genetic variation of pilB gene in Pseudomonas aeruginosa isolated from Iraqi patients with burn infections. Ann Trop Med Public Health. 2020 ; 23 (16) : 33-35. http://doi.org/10.36295/ASRO.2020.231615
Altaai ME, Aziz IH, Marhoon AA. Identification Pseudomonas aeruginosa by 16s rRNA gene for Differentiation from Other Pseudomonas Species that isolated from patients and environment. Baghdad Sci J. 2014 ; 11(2) : 1028-1034. https://doi.org/10.21123/bsj.2014.11.2.1028-1034
Papagiannitsis CC, Medvecky M, Chudejova K, Chudějová k, Skálová A , Rotova V, et al Molecular characterization of carbapenemase-producing Pseudomonas aeruginosa of Czech origin and evidence for clonal spread of extensively resistant sequence type 357 expressing IMP-7 metallo-β-lactamase. Antimicrob Agents Chemother. 2017 ; 61(12) :10-1128. https://doi.org/10.1128/aac.01811-17
Ahmed NA, Ahmed ST, Almohaidi AMS. Association of pvc genes expression with Biofilm formation in Clinical Isolates of Pseudomonas aeruginosa. Baghdad Sci J. 2024; 21(2): 261. https://doi.org/10.21123/bsj.2023.7823
Salumi Z, Abood Z. Phenotypic Diagnosis of Efflux Pump of Escherichia coli Isolated from Urinary Tract Infections. Iraq J biotechnol. 2022; 21(2) : 21-13.
Alibert S, N’gompaza Diarra J, Hernandez J, Stutzmann A, Fouad M, Boyer G, et al. Multidrug efflux pumps and their role in antibiotic and antiseptic resistance: a pharmacodynamic perspective. Expert Opin Drug Metab Toxicol. 2017 ; 13(3) : 301-309. https://doi.org/10.1080/17425255.2017.1251581.
Alcalde-Rico M, Hernando-Amado S, Blanco P, Martínez JL. Multidrug Efflux Pumps at the Crossroad between Antibiotic Resistance and Bacterial Virulence. Front microbiol. 2016; 7: 1483. https://doi.org/10.3389/fmicb.2016.01483
Al-Grawi IGA, Al-Absali AK, Kareem NH, Belal SA. Occurrence of MexAB-OprM efflux pump operon on septicemic Pseudomonas aeruginosa chromosome. Iraqi Postgraduate Med J. 2012; 11(1): 97-102.
Mba IE, Nweze EI. Nanoparticles as therapeutic options for treating multidrug-resistant bacteria: Research progress, challenges, and prospects. World J Microbiol Biotechnol. 2021 ; 37 : 1-30. https://doi.org/10.1007/s11274-021-03070-x
Hamrayev H, Shameli K, Korpayev S. Green synthesis of zinc oxide nanoparticles and its biomedical applications: A review. Nanosci nanotechnol res. 2021; 1(1): 62-74. https://doi.org/10.37934/jrnn.1.1.6274
Naveed Ul Haq A, Nadhman A, Ullah I, Mustafa G, Yasinzai M, Khan I. Synthesis approaches of zinc oxide nanoparticles: the dilemma of ecotoxicity. J Nanomater. 2017 ; 2017: 14. https://doi.org/10.1155/2017/8510342
Ali SG, Ansari MA, Alzohairy MA, Alomary MN, Jalal M, AlYahya S, et al. Effect of biosynthesized ZnO nanoparticles on multi-drug resistant Pseudomonas aeruginosa. Antibiotics. 2020; 9(5) : 260. https://doi.org/10.3390%2Fantibiotics9050260
Qamar SUR, Ahmad JN. Nanoparticles: Mechanism of biosynthesis using plant extracts, bacteria, fungi, and their applications. J Mol Liq. 2021; 334 : 116040. https://doi.org/10.1016/j.molliq.2021.116040
Berrani A, Marmouzi I, Bouyahya A. Phenolic compound analysis and pharmacological screening of vitex agnus-castus functional parts. Biomed Res Int. 2021; 2021 : 1-10. https://doi.org/10.1155/2021/6695311
Dobrucka R. Facile synthesis of trimetallic nanoparticles Au/CuO/ZnO using Vitex agnus-castus extract and their activity in degradation of organic dyes. Int J Environ Anal Chem. 2021; 101 (14) : 2046-2057. https://doi.org/10.1080/03067319.2019.1691543
Crabbé A, De Boever P, Van Houdt R, Moors H, Mergeay M, Cornelis P. Use of the rotating wall vessel technology to study the effect of shear stress on growth behaviour of Pseudomonas aeruginosa PA01. Environ Microbiol. 2008; 10(8) : 2098-2110. https://doi.org/10.1111/j.1462-2920.2008.01631.x
Arabestani MR, Rajabpour M, Mashouf RY, Alikhani MY, Mousavi SM. Expression of efflux pump MexAB-OprM and OprD of Pseudomonas aeruginosa strains isolated from clinical samples using qRT-PCR. Arch Iran Med. 2015; 18(2) : 1. PMID: 25644798.
Spilker T, Coenye T, Vandamme P, LiPuma JJ. PCR-based assay for differentiation of Pseudomonas aeruginosa from other Pseudomonas species recovered from cystic fibrosis patients. J Clin Microbiol. 2004; 42(5) : 2074-2079. https://doi.org/10.1128/jcm.42.5.2074-2079.2004
Haleem AM , Hameed AH , Al-Majeed RA , Hussein NN , Hikmat RA , Queen BK. Anticancer, Antioxidant, Antimicrobial and Cytogenetic Effects of Ethanol Leaves Extract of Carthamus tinctorius. IOP Conf Ser Earth Environ Sci. 2023; 1262 (5): 052. https://doi.org/10.1088/1755-1315/1262/5/052035
Pillai AM, Sivasankarapillai VS, Rahdar A, Joseph J, Sadeghfar F, Anuf A R, et al. Green synthesis and characterization of zinc oxide nanoparticles with antibacterial and antifungal activity. J Mol Struct. 2020; 1211: 128107. https://doi.org/10.1016/j.molstruc.2020.128107
Osman DAM, Mustafa MA. Synthesis and characterization of zinc oxide nanoparticles using zinc acetate dihydrate and sodium hydroxide. J Nanosci Nanoeng. 2015; 1(4): 248-251.
Khodair ZT, Khadom AA, Jasim HA. Corrosion protection of mild steel in different aqueous media via epoxy/nanomaterial coating: preparation, characterization and mathematical views. J Mater Res Technol. 2019; 8 (1): 424-435. https://doi.org/10.1016/j.jmrt.2018.03.003
Zotta MD, Nevins MC, Hailstone RK, Lifshin E. The determination and application of the point spread function in the scanning electron microscope. Microsc Microanal. 2018; 24(4): 396-405. https://doi.org/10.1017/S1431927618012412
Teh YJ, Bahari Jambek A, Hashim U. A study of nano-biosensors and their output amplitude analysis algorithms. J Med Eng Technol. 2017; 41(1): 72-80. https://doi.org/10.1080/03091902.2016.1223195
Al-Tememe TM. Molecular detection and phylogenetic analysis of Pseudomonas aeruginosa isolated from some infected and healthy ruminants in Basrah, Iraq. Arch Razi Inst. 2022; 77(2) : 537. https://doi.org/10.22092/ari.2022.357802.2099
Abbas HA, El-Ganiny AM, Kamel HA. Phenotypic and genotypic detection of antibiotic resistance of Pseudomonas aeruginosa isolated from urinary tract infections. Afr Health Sci. 2018; 18(1): 11-21. https://doi.org/10.4314%2Fahs.v18i1.3
Al-Shimmary SMH, Mohamed NS, Al-Qaysi SAS, Almohaidi AMS. Phylogeny analysis of gyrB gene and 16S rRNA genes of Pseudomonas aeruginosa isolated from Iraqi Patients. Res J Pharm Technol. 2021 ; 14(5) : 2517-2521. http://dx.doi.org/10.52711/0974-360X.2021.00443
Didelot X, Bowden R, Wilson DJ, Peto TEA, Crook DW. Transforming clinical microbiology with bacterial genome sequencing. Nat Rev Genet. 2012; 13(9) : 601-612. https://doi.org/10.1038/nrg3226
M Ebrahimpour, I Nikokar, Ghasemi Y, H Sedigh Ebrahim-Saraie, A Araghian, M Farahbakhsh, et al.Antibiotic resistance and frequency of class 1 integrons among Pseudomonas aeruginosa, isolated from burn patients in Guilan, Iran. Iran J Microbiol. 2013; 5(1): 36. http://dx.doi.org/10.7416/ai.2018.2202
Pérez A, Gato E, Pérez-Llarena J, Fernández-Cuenca F, Gude MJ, Oviaño M, et al. High incidence of MDR and XDR Pseudomonas aeruginosa isolates obtained from patients with ventilator-associated pneumonia in Greece, Italy and Spain as part of the MagicBullet clinical trial. J Antimicrob Chemother. 2019; 74(5) : 1244-1252. https://doi.org/10.1093/jac/dkz030
Martin-Loeches I, Deja M, Koulenti D, Dimopoulos G, Marsh B, Torres A, et al. Potentially resistant microorganisms in intubated patients with hospital-acquired pneumonia: the interaction of ecology, shock and risk factors. Intensive Care Med. 2013; 39: 672-681. https://doi.org/10.1007/s00134-012-2808-5
Adabi M, Talebi-Taher M, Arbabi L, Afshar M, Fathizadeh S, Minaeian S, et al. Spread of efflux pump overexpressing-mediated fluoroquinolone resistance and multidrug resistance in Pseudomonas aeruginosa by using an efflux pump inhibitor. Infect Chemother. 2015; 47(2): 98-104. https://doi.org/10.3947/ic.2015.47.2.98
Cunrath O, Meinel DM, Maturana P, Fanous J, Buyck JM, Saint Auguste P, et al. Quantitative contribution of efflux to multi-drug resistance of clinical Escherichia coli and Pseudomonas aeruginosa strains. EBioMedicine. 2019; 41: 479-487. https://doi.org/10.1016/j.ebiom.2019.02.061
Arabestani MR, Rajabpour M, Mashouf RY, Alikhani MY, Mousavi SM. Expression of efflux pump MexAB-OprM and OprD of Pseudomonas aeruginosa strains isolated from clinical samples using qRT-PCR. Arch Iran Med. 2015; 18(2): 1. http://dx.doi.org/10.1016/j.genrep.2020.100744
Rana T, Kaur N, Farooq U, Khan A, Singh S. Efflux as an arising cause of drug resistance in Punjab-India. Int J Biol Pharm Allied Sci . 2015; 4(9): 5967-5979. https://doi.org/10.21474/ijar01/2971
Dorri K, Modaresi F, Shakibaie MR, Moazamian E. Effect of gold nanoparticles on the expression of efflux pump mexA and mexB genes of Pseudomonas aeruginosa strains by Quantitative real-time PCR. Pharmacia. 2022; 69 (1): 125-133. https://doi.org/10.3897/pharmacia.69.e77608
Al-Grawi IGA, Al-Absali AK, Kareem NH, Belal SA. Occurrence of MexAB-OprM efflux pump operon on septicemic Pseudomonas aeruginosa chromosome. Iraqi Postgraduate Med J. 2012; 11(1): 97-102.
Kishk RM, Abdalla MO, Hashish AA, Nemr NA, El Nahhas N, Alkahtani S, et al. Efflux MexAB-mediated resistance in P. aeruginosa isolated from patients with healthcare associated infections. Pathogens. 2020; 9(6): 471. https://doi.org/10.3390/pathogens9060471
Bhandari S, Adhikari S, Karki D. Antibiotic resistance, biofilm formation and detection of mexA/mexB efflux-pump genes among clinical isolates of Pseudomonas aeruginosa in a Tertiary Care Hospital, Nepal. Front. trop Dis. 2022; 2: 810863. https://doi.org/10.3389/fitd.2021.810863
Al-Jumaily EF, Abd NQ. Effect of quinoline-2-one derivatives on the gene expression of mexb of pseudomonas aeruginosa. Biomed pharmacol J. 2017 Sept 25; 10(3): 1475–9. https://doi.org/10.13005/bpj/1255
Pourakbari B, Yaslianifard S, Yaslianifard S, Mahmoudi S, Keshavarz-Valian S, Mamishi S. Evaluation of efflux pumps gene expression in resistant Pseudomonas aeruginosa isolates in an Iranian referral hospital. Iran J Microbiol. 2016; 8(4) : 249.
Shigemura K, Osawa K, Kato A. Association of overexpression of efflux pump genes with antibiotic resistance in Pseudomonas aeruginosa strains clinically isolated from urinary tract infection patients. J Antibiot (Tokyo). 2015; 68(9) : 568-572. https://doi.org/10.1038/ja.2015.34
Singh J, Dutta T, Kim KH, Rawat M, Samddar P, Kumar P. ‘Green’synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnology. 2018; 16(1) : 1-24. https://doi.org/10.1186/s12951-018-0408-4
Naseer M, Aslam U, Khalid B, Chen B. Green route to synthesize Zinc Oxide Nanoparticles using leaf extracts of Cassia fistula and Melia azadarach and their antibacterial potential. Sci Rep. 2020; 10(1): 9055. https://doi.org/10.1038/s41598-020-65949-3
Rajiv P, Rajeshwari S, Venckatesh R. Bio-Fabrication of zinc oxide nanoparticles using leaf extract of Parthenium hysterophorus L. and its size-dependent antifungal activity against plant fungal pathogens. Spectrochim Acta A Mol Biomol Spectrosc. 2013; 112: 384-387. https://doi.org/10.1016/j.saa.2013.04.072
Ababutain IM, Alghamdi AI. In vitro anticandidal activity and gas chromatography-mass spectrometry (GC-MS) screening of Vitex agnus-castus leaf extracts. PeerJ. 2021; 9 :e10561. https://doi.org/10.7717/peerj.10561
Keikha N, Shafaghat M, Mousavia SM, Moudi M, Keshavarzi F. Antifungal effects of ethanolic and aqueous extracts of Vitex agnus-castus against vaginal isolates of Candida albicans. Curr Med Mycol. 2018; 4(1): 1. https://doi.org/10.18502/cmm.v4i1.26
Karaguzel O, Girmen B. Morphological variations of chaste tree (Vitex agnus‐castus) genotypes from southern Anatolia, Turkey. N Z J Crop Hortic Sci. 2009; 37(3): 253-261. https://doi.org/10.1080/01140670909510271
Cárdenas KA, Domínguez J, Palacios E, García L, Ramírez PA, Flores M. Synthesis and Characterization of ZnO Nanoparticles Obtained from the Extract of Schinus Molle. Springer; 2021: 569-575. https://doi.org/10.1007/978-3-030-65493-1_58
Sukri SNAM, Shameli K, Wong MMT, Teow SY, Chew J, Ismail NA. Cytotoxicity and antibacterial activities of plant-mediated synthesized zinc oxide (ZnO) nanoparticles using Punica granatum (pomegranate) fruit peels extract. J Mol Struct. 2019; 1189: 57-65. https://doi.org/10.1016/j.molstruc.2019.04.026
Gur T, Meydan I, Seckin H, Bekmezci M, Sen F. Green synthesis, characterization and bioactivity of biogenic zinc oxide nanoparticles. Environ Res. 2022; 204: 111897. https://doi.org/10.1016/j.envres.2021.111897
Hassani SM, Nakhaei, MM, Forghanifard MM. Inhibitory effect of zinc oxide nanoparticles on Pseudomonas aeruginosa biofilm formation. Nanomed J 2015; 2: 121-128. https://doi.org/10.1186/s12941-023-00639-2
Saadat M, Mohammadi SR, Eskandari M. Evaluation of antibacterial activity of ZnO and TiO2 nanoparticles on planktonic and biofilm cells of Pseudomonas aeruginosa. Biosci Biotechnol Res Asia. 2013; 10(2): 629-635. https://doi.org/10.13005/bbra/1174
Ma H, Williams PL, Diamond SA. Ecotoxicity of manufactured ZnO nanoparticles–a review. Environ pollut. 2013; 172 : 76-85. https://doi.org/10.1016/j.envpol.2012.08.011
Kelly KA, Havrilla CM, Brady TC, Abramo KH, Levin ED. Oxidative stress in toxicology: established mammalian and emerging piscine model systems. Environ Health Perspect. 1998; 106(7): 375-384. https://doi.org/10.1289/ehp.98106375
Zhang L, Jiang Y, Ding Y, Povey M, York D. Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanoparticle Res. 2007; 9: 479-489. https://doi.org/10.1007/s11051-006-9150-1
Adavallan K, Krishnakumar N. Mulberry leaf extract mediated synthesis of gold nanoparticles and its anti-bacterial activity against human pathogens. ANSN. 2014; 5(2): 025018. https://doi.org/10.1088/2043-6262/5/2/025018
Habbab A, Sekkoum K, Belboukhari N, Cheriti A, Y Aboul-Enein H. Essential oil chemical composition of Vitex agnus-castus L. from Southern-West Algeria and its antimicrobial activity. Curr Bioact Compd. 2016; 12(1): 51-60. https://doi.org/10.2174/1573407212666160330152633
Parcelli J, Helena L, Alves M, Cardoso N, Carolina A, Martins M, et al. Chemical composition, antioxidant, antimicrobial and antibiofilm activities of Vitex gardneriana schauer leaves’s essential oil. Microb Pathog. 2019; 135: 103608-8. https://doi.org/10.1016/j.micpath.2019.103608
Khan ZUH, Sadiq HM, Shah NS, Khan A U, Muhammad N, Hassan S Ul, et al. Greener synthesis of zinc oxide nanoparticles using Trianthema portulacastrum extract and evaluation of its photocatalytic and biological applications. J Photochem Photobiol B. 2019; 192: 147-157. https://doi.org/10.1016/j.jphotobiol.2019.01.013
Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Nanomed J. 2017; 12: 1227–49. https://doi.org/10.2147/IJN.S121956
Ahmed FY, Aly UF, Abd El-Baky RM, Waly NGFM. Effect of titanium dioxide nanoparticles on the expression of efflux pump and quorum-sensing genes in MDR Pseudomonas aeruginosa isolates. Antibiotics. 2021; 10(6): 625. https://doi.org/10.3390/antibiotics10060625
Sahib AHA, Al-Shareefi E, Hameed IH. Detection of Bioactive Compounds of Vitex agnus-castus and Citrus sinensis Using Fourier-transform infrared spectroscopic profile and Evaluation of Its Anti-microbial Activity. Indian J Public Health Res Dev. 2019; 10(1): 954. https://doi.org/10.5958/0976-5506.2019.00184.0
Liu X, Ma Z, Zhang J, Yang L. Antifungal compounds against Candida infections from traditional Chinese medicine. Biomed Res Int. 2017; 2017: 1–12. https://doi.org/10.1155/2017/4614183