Verification and Demonstration of the Ability of Plasma Generated from Dielectric Barrier Discharge to Oxidize

Authors

DOI:

https://doi.org/10.21123/bsj.2024.11217

Keywords:

Dielectric barrier discharge (DBD), Decolorization, Electrical conductivity EC, Indigo carmine, Oxidation

Abstract

 

The oxidation ability of cold plasma is a major influence on bacterial inactivation, lipid oxidation, medical equipment sterilization, and applications in air and wastewater purification, for this reason, the ability of cold plasma to oxidize materials is an important factor that must be studied. In this study, the ability of cold plasma generated by a dielectric barrier discharge (DBD) to oxidize materials was revealed and proven by using different exposure times (5, 10, 15, 20 min) and several measurements: the decolonization of indigo carmine from dark blue to yellow, the significant reduction in pH, and the increase in oxidation reduction potential (ORP) and electrical conductivity (EC), Proven spectrophotometrically in the presence of nitrogen and its oxide ions. It was observed that the exposure time of 15 min is the maximum period during which oxidation occurs, after which saturation occurs. Numerous reactive oxygen and nitrogen species are created upon the interaction of gas phase plasma and water vapor (supported by excited species, energies and plasma electrons).

References

Aggelopoulos CA. Recent advances of cold plasma technology for water and soil remediation: A critical review. Chem Eng J. 2022; 428(4): 131657. https://doi.org/10.1016/j.cej.2021.131657

Razuqi NS, Muftin FS, Murbat HH, Abdalameer NK. Influence of dielectric-barrier discharge (DBD) cold plasma on water contaminated bacteria. Annu Res Rev Biol. 2017; 14(4): 1-9. http://dx.doi.org/10.9734/ARRB/2017/34642

Vichiansan N, Kaai N, Leksakul K, Lumyong S, Han JG. Sterilization of medical equipment by plasma technology. Chiang Mai J Sci. 2018; 45(4):1811-1826. http://epg.science.cmu.ac.th/ejournal/

Pérez-Andrés JM, Cropotova J, Harrison SM, Brunton NP, Cullen PJ, Rustad T, et al. Effect of cold plasma on meat cholesterol and lipid oxidation. Foods. 2020; 9(12): 1786. http://dx.doi.org/10.3390/foods9121786

Mravlje J, Regvar M, Vogel-Mikuš K. Development of cold plasma technologies for surface decontamination of seed fungal pathogens: Present status and perspectives. J Fungi. 2021; 7(8): 650. https://doi.org/10.3390/jof7080650

Barjasteh A, Dehghani Z, Lamichhane P, Kaushik N, Choi EH, Kaushik NK. Recent progress in applications of non-thermal plasma for water purification, bio-sterilization, and decontamination. Appl Sci. 2021; 11(8): 3372. https://doi.org/10.3390/app11083372

Mohammed SA, Al-Khazrajy OS, Abdallh M, Aadim KA, Al-Mamari A, Al-Owaisi H, et al. Removal of Dyes from Aqueous Solutions using Non-Thermal Plasma. Environ Process. 2023; 10(4): 1-19. https://doi.org/10.1007/s40710-023-00677-0

Kadum E. Effect of the Dielectric Barrier Discharge Plasma on the Optical Properties of CDS Thin Film. Baghdad Sci J. 2019; 16(4(Suppl.)): 1030-1035. http://dx.doi.org/10.21123/bsj.2019.16.4(Suppl.).1030

Yasoob A N, Murbat HH, Khaleel KJ, editors. The influence of cold atmospheric pressure plasma on TSH and thyroid hormones in male rats. AIP Conf Proc.; 2020; 2213: 020015. http://dx.doi.org/10.1063/5.0000125

Yasoob A N, Khaleel KJ, Murbat HH. Study of the effect of cold plasma on the reproductive endocrinology of male rats. Plant Arch. 2020; 20(1): 526-31. https://plantarchives.org/SPECIAL%20ISSUE%2020-1/104__526-531_.pdf

Yasoob A N, Khaleel K, Murbat H, editors. Effect of Cold Atmospheric Pressure Plasma on Fertility Hormones for Female Rats. IOP Conf Ser. Mater Sci Eng.; 2020: 757 012069. http://dx.doi.org/10.1088/1757-899X/757/1/012069.

Abbas B. H., Abdalameer N. K., and Mohammed R. S. Synthesis of Copper Oxide Nanostructures by Ar Plasma Jet and Study of Their Structural and Optical Properties Iraqi J. of Sci. 2024; 65(4) : 1999-2006. DOI: 10.24996/ijs.2024.65.4.18

Noori AS, Mageed NF, Abdalameer N. K., Mohammed MK, Mazhir SN, Ali AH, Jaber NA, et al. The histological effect of activated Aloe Vera extract by microwave plasma on wound healing. Chem Phys Lett. 2022; 807: 140112. https://doi.org/10.1016/j.cplett.2022.140112

Kim S, Kim C-H. Applications of plasma-activated liquid in the medical field. Biomedicines. 2021; 9(11): 1700. http://dx.doi.org/10.3390/biomedicines9111700 .

Halliwell B, Gutteridge JM. Free radicals in biology and medicine: Oxford university press, USA; 2015. 488-489 p. http://dx.doi.org/10.1093/acprof:oso/9780198717478.001.0001

Chen Z, Yu S, Lin L, Cheng X, Gjika E, Keidar M. Effects of cold atmospheric plasma generated in deionized water in cell cancer therapy. plasma process polym. 2016; 13(12): 1151-1156. https://doi.org/10.1002/ppap.201600086

Mahdi SS, Aadim KA, Khalaf MA. New Spectral Range Generations from Laser-plasma Interaction. Baghdad Sci J. 2021; 18(4): 1328-. https://doi.org/10.21123/bsj.2021.18.4.1328

de Keijzer M, van Bommel MR, Keijzer RH-d, Knaller R, Oberhumer E. Indigo carmine: understanding a problematic blue dye. Studies in Conservation. 2012; 57(sup1): S87-S95. https://doi.org/10.1179/2047058412Y.0000000058

Krosuri A, Wu S, Bashir MA, Walquist M. Efficient degradation and mineralization of methylene blue via continuous-flow electrohydraulic plasma discharge. J Water Process Eng 2021; 40: 101926. https://doi.org/10.1016/j.jwpe.2021.101926

Krosuri A, Wu S, Bashir MA, Walquist M. Efficient degradation and mineralization of methylene blue via continuous-flow electrohydraulic plasma discharge. J Water Proc Eng. 2021; 40: 101926.

Zhou D, Zhou R, Zhou R, Liu B, Zhang T, Xian Y, et al. Sustainable ammonia production by non-thermal plasmas: Status, mechanisms, and opportunities. Chem Eng J. 2021; 421: 129544. https://doi.org/10.1016/j.cej.2021.129544

Li S, Timoshkin IV, Maclean M, MacGregor SJ, Wilson MP, Given MJ, et al. Oxidation and biodecontamination effects of impulsive discharges in atmospheric air. IEEE Trans Plasma Sci. 2016; 44(10): 2145-55. https://doi.org/10.1109/TPS.2016.2581317

Reddy PMK, Raju BR, Karuppiah J, Reddy EL, Subrahmanyam C. Degradation and mineralization of methylene blue by dielectric barrier discharge non-thermal plasma reactor. Chem Eng J. 2013; 217: 41-7. https://doi.org/10.1016/j.cej.2012.11.116

Li S, Timoshkin IV, Maclean M, MacGregor SJ, Wilson MP, Given MJ, et al. Steady-state corona discharges in atmospheric air for cleaning and decontamination. IEEE Trans Plasma Sci. 2013; 41(10): 2871-8. https://doi.org/10.1109/TPS.2013.2264903

Zeghioud H, Nguyen-Tri P, Khezami L, Amrane A, Assadi AA. Review on discharge Plasma for water treatment: Mechanism, reactor geometries, active species and combined processes. J Water Process Eng. 2020; 38: 101664. https://doi.org/10.1016/j.jwpe.2020.101664

Downloads

Issue

Section

article

How to Cite

1.
Verification and Demonstration of the Ability of Plasma Generated from Dielectric Barrier Discharge to Oxidize. Baghdad Sci.J [Internet]. [cited 2024 Dec. 4];22(6). Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/11217