Fractional Local Metric Dimension of Comb Product Graphs

Main Article Content

Siti Aisyah
Mohammad Imam Utoyo
Liliek Susilowati

Abstract

The local resolving neighborhood  of a pair of vertices  for  and  is if there is a vertex  in a connected graph  where the distance from  to  is not equal to the distance from  to , or defined by . A local resolving function  of  is a real valued function   such that  for  and . The local fractional metric dimension of graph  denoted by , defined by  In this research, the author discusses about the local fractional metric dimension of comb product are two graphs, namely graph  and graph , where graph  is a connected graphs and graph  is a complate graph  and denoted by  We get

Downloads

Download data is not yet available.

Article Details

How to Cite
1.
Aisyah S, Utoyo MI, Susilowati L. Fractional Local Metric Dimension of Comb Product Graphs. Baghdad Sci.J [Internet]. 2020Dec.1 [cited 2021Jan.25];17(4):1288. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/3665
Section
article

References

Slater PJ. Leaves of trees. Congr. Numer. 1975 Feb 17;14(549-559):37.

Melter FH, Harary F. On the metric dimension of a graph. Ars Combin. 1976;2:191-5.

Chartrand G, Eroh L, Johnson MA, Oellermann OR. Resolvability in graphs and the metric dimension of a graph. Discrete Applied Mathematics. 2000 Oct 15;105(1-3):99-113.

Okamoto F, Phinezy B, Zhang P. The local metric dimension of a graph. MATH. BOHEM. 2010;135(3):239-55.

Susilowati L, Utoyo MI, Slamin S. On commutative characterization of graph operation with respect to metric dimension. Journal of Mathematical and Fundamental Sciences. 2017 Oct 3;49(2):156-70.

Susilowati L, Slamin RA. The complement metric dimension of graphs and its operations. Int. J. Civ. Eng. Technol. 2019;10(3):2386-96.

Arumugam S, Mathew V. The fractional metric dimension of graphs. Discrete Math. 2012; 32:1584–1590.

Feng M, Wang K. On the fractional metric dimension of corona product graphs and lexicographic product graphs. arXiv preprint arXiv:1206.1906. 2012 Jun 9.

Arumugam S, Mathew V, Shen J. On fractional metric dimension of graphs Discrete Mathematics. Algorithms Appl. 2013;5:1-8.

Krismanto DA, Saputro SW. Fractional metric dimension of tree and unicyclic graph. Procedia Comput. Sci. 2015;74:47–52.

Feng M, Lv B, Wang K. On the fractional metric dimension of graphs. Discrete Appl. Math. 2014;170:55–63.

Yi E. The fractional metric dimension of permutation graphs. Acta Math Sinica. 2015; 31(3):367–382.

Benish H, Murtaza M, Javaid I. The Fractional Local Metric Dimension of Graphs. arXiv preprint arXiv:1810.02882. 2018 Oct 5.

Saputro SW, Semanicova-Fenovc A, Baca M, Lascsakova M. On fractional metric dimension of comb product graphs. Stat., Optim. Inf. Comput.2018;6: 150–158.

Saputro SW, Mardiana N, Purwasih IA. The metric dimension of comb product graphs. InGraph Theory Conference in Honor of Egawa’s 60th Birthday, September 2013 Sep 10 (Vol. 10).