Fractional Local Metric Dimension of Comb Product Graphs

Main Article Content

Siti Aisyah
Mohammad Imam Utoyo
https://orcid.org/0000-0002-3807-6372
Liliek Susilowati

Abstract

The local resolving neighborhood  of a pair of vertices  for  and  is if there is a vertex  in a connected graph  where the distance from  to  is not equal to the distance from  to , or defined by . A local resolving function  of  is a real valued function   such that  for  and . The local fractional metric dimension of graph  denoted by , defined by  In this research, the author discusses about the local fractional metric dimension of comb product are two graphs, namely graph  and graph , where graph  is a connected graphs and graph  is a complate graph  and denoted by  We get

Article Details

How to Cite
1.
Fractional Local Metric Dimension of Comb Product Graphs. Baghdad Sci.J [Internet]. 2020 Dec. 1 [cited 2025 Jan. 19];17(4):1288. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/3665
Section
article

How to Cite

1.
Fractional Local Metric Dimension of Comb Product Graphs. Baghdad Sci.J [Internet]. 2020 Dec. 1 [cited 2025 Jan. 19];17(4):1288. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/3665

References

Slater PJ. Leaves of trees. Congr. Numer. 1975 Feb 17;14(549-559):37.

Melter FH, Harary F. On the metric dimension of a graph. Ars Combin. 1976;2:191-5.

Chartrand G, Eroh L, Johnson MA, Oellermann OR. Resolvability in graphs and the metric dimension of a graph. Discrete Applied Mathematics. 2000 Oct 15;105(1-3):99-113.

Okamoto F, Phinezy B, Zhang P. The local metric dimension of a graph. MATH. BOHEM. 2010;135(3):239-55.

Susilowati L, Utoyo MI, Slamin S. On commutative characterization of graph operation with respect to metric dimension. Journal of Mathematical and Fundamental Sciences. 2017 Oct 3;49(2):156-70.

Susilowati L, Slamin RA. The complement metric dimension of graphs and its operations. Int. J. Civ. Eng. Technol. 2019;10(3):2386-96.

Arumugam S, Mathew V. The fractional metric dimension of graphs. Discrete Math. 2012; 32:1584–1590.

Feng M, Wang K. On the fractional metric dimension of corona product graphs and lexicographic product graphs. arXiv preprint arXiv:1206.1906. 2012 Jun 9.

Arumugam S, Mathew V, Shen J. On fractional metric dimension of graphs Discrete Mathematics. Algorithms Appl. 2013;5:1-8.

Krismanto DA, Saputro SW. Fractional metric dimension of tree and unicyclic graph. Procedia Comput. Sci. 2015;74:47–52.

Feng M, Lv B, Wang K. On the fractional metric dimension of graphs. Discrete Appl. Math. 2014;170:55–63.

Yi E. The fractional metric dimension of permutation graphs. Acta Math Sinica. 2015; 31(3):367–382.

Benish H, Murtaza M, Javaid I. The Fractional Local Metric Dimension of Graphs. arXiv preprint arXiv:1810.02882. 2018 Oct 5.

Saputro SW, Semanicova-Fenovc A, Baca M, Lascsakova M. On fractional metric dimension of comb product graphs. Stat., Optim. Inf. Comput.2018;6: 150–158.

Saputro SW, Mardiana N, Purwasih IA. The metric dimension of comb product graphs. InGraph Theory Conference in Honor of Egawa’s 60th Birthday, September 2013 Sep 10 (Vol. 10).