QTAIM study of the bonding in triosmium trihydride cluster [Os3(µ-H)3(µ3-ɳ2-CC7H3(2-CH3)NS)(CO)8]

Main Article Content

Nadia Ezzat Al-kirbasee
Shatha Raheem Helal Alhimidi
Muhsen Abood Muhsen Al-Ibadi


    The Atoms in Molecules (AIM) analysis for triosmium cluster, which contains trihydridede, carbon, carbonyl and 2-methylbenzothiazolide ligands, [Os3(µ-H)33-ɳ2-CC7H3(2-CH3)NS)(CO)8] is reported. Bonding features in this cluster has been analyzed based on QTAIM ("Quantum Theory of Atoms in Molecules") in this work. The topological indices derived from electron density of relevant interactions in triosmium compound have been studied. The major interesting point of the AIM analyses is that the core of part (Os3H3) reveals the absence of any critical points and bond paths connecting any pairs of Os metal atoms. However, bond critical points with their bond paths occurring between all Os-H interactions were observed. For the bridged core part (Os3H3), a 6c–6e multicenter interaction is proposed. The topological parameters computed for the bridging 2-methylbenzothiazolide ligand interactions indicate that all of these interactions are typical related to the covalent bonds with a contribution of some double-bond character.


Download data is not yet available.

Article Details

How to Cite
Al-kirbasee NE, Alhimidi SRH, Al-Ibadi MAM. QTAIM study of the bonding in triosmium trihydride cluster [Os3(µ-H)3(µ3-ɳ2-CC7H3(2-CH3)NS)(CO)8]. Baghdad Sci.J [Internet]. [cited 2021May9];18(4):1279. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/4947


Ghosh S, Uddin MN, Begum N, Hossain GMG, Azam KA, Kabir SE. Synthesis, Structure and Reactivity of Electron Deficient Triosmium Cluster Bearing 2, 6-Dimethylbenzothiazolide Ligand. J Chem Crystallogr. 2010;40(7): 572–8.

Rosenberg E, Abedin MJ, Rokhsana D, Viale A, Gobetto R, Milone L and Hardcastle K., Ligand dependent structural changes in the acid–base chemistry of electron deficient benzoheterocycle triosmium clusters. Inorganica Chim Acta. 2002;334:343–54.

Rosenberg E, Kumar R. New methods for functionalizing biologically important molecules using triosmium metal clusters. Dalt Trans. 2012;41(3):714–22.

Kabir SE, Kolwaite DS, Rosenberg E, Hardcastle K, Cresswell W, Grindstaff J. Synthesis, Structure, and Reactivity of Electron-Deficient Complexes of Quinolines with Triosmium Clusters. Organometallics. 1995;14(8):3611–3.

Ruiz J, Sol D, Garcia L, Mateo MA, Vivanco M, and Maelen JF Van Der,. Generation and Tunable Cyclization of Formamidinate Ligands in Carbonyl Complexes of Mn(I): An Experimental and Theoretical Study. 2019;38(4) :916–925.

Tezcan H, Şenöz H, Tokay N. Experimental and quantum chemical studies of the structural and spectral properties of novel diazenyl formazans. J Mol Struct. 2019; 1190:171– 83.

Kumar PSV, Raghavendra V, Subramanian V. Bader ’ s Theory of Atoms in Molecules (AIM) and its Applications. 2016;128(10):1527–36.

Van der Maelen JF, Cabeza JA. A topological analysis of the bonding in [M2(CO)10] and [M3(μ-H)3(CO)12] complexes (M = Mn, Tc, Re). Theor Chem Acc. 2016;135(3):1–11.

Parisi F, Sciascia L, Princivalle F, Merli M. Pressure stability fi eld of Mg-perovskite under deep mantle conditions : A topological approach based on Bader ’ s analysis coupled with catastrophe theory. Ceram Int [Internet]. 2019;45(2):2820–7. Available from: https://doi.org/10.1016/j.ceramint.2018, 07. 294

Sk E, Macchi P, Garlaschelli L, Martinengo S, Uni V, Venezian VG, et al. QTAIM analysis of the bonding in Mo-Mo bonded dimolybdenum complexes. Inorg Chem [Internet]. 2016;51(4):7384–91. Available from: https://tel.archives-ouvertes.fr/tel-01181264

Shabbir M, Akhter Z, Adeel M, Mckee V, Sani A, Liaqat F, et al. Synthesis , characterization , antioxidant evaluation , molecular docking and density functional theory studies of phenyl and naphthyl based esters. J Mol Struct [Internet]. 2020;1207:127812. Available from: https://doi.org/10.1016/j.molstruc.2020.127812

Alberto J, Arriaga J, Fortin S, Lombardi O. A new chapter in the problem of the reduction of chemistry to physics : the Quantum Theory of Atoms in Molecules. Found Chem [Internet]. 2019;21(1):125–36. Available from: https://doi.org/10.1007/s10698-018- 09332- 1.

Cabeza JA, Van Der Maelen JF, Garcia-Granda S. Topological analysis of the electron density in the N-heterocyclic carbene triruthenium cluster [Ru3(μ-H)2(μ3- MeImCH)(CO)9] (Me2im = l,3-dimethylimidazol-2-ylidene). Organometallics. 2009;28(13):3666–72.

Kabir SE, Malik KMA, Mandal HS, Mottalib MA, Abedin MJ, Rosenberg E. Reaction of Os3(CO)(9)(eta(3)-eta(2)-C7H3(2-CH3)NS)(mu-H) with diazomethane. The first example of a trimetallic cluster containing a mu-methylidene and a sigma-methyl. Organometallics. 2002;21(13): 2593– 5.

Adamo C., and Barone V., Toward reliable density functional methods without adjustable parameters: The PBE0 model, J. Chem. Phys., 1999; 110, 6158-69. DOI: 10.1063/1.478522.

Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. gaussian 09, Revision d. 01, Gaussian. Inc., Wallingford CT. 2009;201.

Fuentealba P, Szentpály L, Stoll H, Fraschio FX, Preuss H. Pseudopotential calculations including core-valence correlation: Alkali compounds. J Mol Struct THEOCHEM. 1983;93:213–9.

Höllwarth, A., Boehme, M., Dapprich, S., Ehlers, A. W., Gobbi, A., Jonas, V., Koehler K., Stegmann R., Veldkamp, A., and Frenking, G., A set of d-polarization functions for pseudo-potential basis sets of the main group elements AlBi and f-type polarization functions for Zn, Cd, Hg. Chem. Phys. Lett. 1993; 208, 237–240.

Petersson G. A., Bennett, Tensfeldt A. T. G., Al-Laham M. A., Shirley W. A., and Mantzaris J., A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row atoms, J. Chem. Phys., 1988; 89: 2193-218. DOI: 10.1063/1.455064.

Biegler-König F, Schönbohm J. Update of the AIM2000-program for atoms in molecules. J. comput. Chem. 2002; 23(15):1489.

Huzinaga, S. and Klobukowski, M. Well-tempered Gaussian basis sets for the calculation of matrix Hartree-Fock wavefunctions. Chem. Phys. Lett. 1993; 212, 260–264.

Bader, R. F. W., A bond path: a universal indicator of bonded interactions. J Phys Chem A. 1998;102(37):7314–23.

Kutzelnigg W. Atoms in Molecules. A Quantum Theory.(Reihe: International Series of Monographs on Chemistry, Vol. 22.) Von RFW Bader. Clarendon Press, Oxford, 1990. XVIII, 438 S., geb.£ 50.00.–ISBN 0‐19‐855168‐1. Angewandte Chemie. 1992 Oct;104(10):1423.

Rozas I, Alkorta I, Elguero J. Behavior of ylides containing N, O, and C atoms as hydrogen bond acceptors. J Am Chem Soc. 2000;122(45):11154–61.

Macchi P, Proserpio D. M, Sironi A. Experimental electron density in a transition metal dimer: metal−metal and metal− ligand bonds. J Am Chem Soc. 1998;120(51):13429–35.

Feliz M, Llusar R, Andrés J, Berski S, Silvi B. Topological analysis of the bonds in incomplete cuboidal [Mo 3 S 4] clusters. New J Chem. 2002;26(7):844–50.

Macchi P, Sironi A. Chemical bonding in transition metal carbonyl clusters: complementary analysis of theoretical and experimental electron densities. Coord Chem Rev. 2003;238:383–412.

Van der Maelen JF, García-Granda S, Cabeza JA. Theoretical topological analysis of the electron density in a series of triosmium carbonyl clusters: [Os3(CO)12], [Os3(μ-H)2(CO)10], [Os3(μ-H)(μ-OH)(CO)10], and [Os3(μ-H)(μ-Cl)(CO)10]. Comput Theor Chem [Internet]. 2011;968(1–3):55–63. Available from: http://dx.doi.org/10.1016/j.comptc. 2011.05.003

Bader R, Stephens M. Spatial localization of the electronic pair and number distributions in molecules. J Am Chem, 1975;97(26):7391-7399.

Bo C, Sarasa J. P., Poblet J. M. Laplacian of charge density for binuclear complexes: Terminal vs bridging carbonyls. J Phys Chem. 1993;97(24): 6362– 6.

Macchi P, Garlaschelli L, Sironi A. Electron density of semi-bridging carbonyls. Metamorphosis of CO ligands observed via experimental and theoretical investigations on [FeCo(CO)8]-. J Am Chem Soc. 2002;124(47):14173–84.

Macchi P, Donghi D, Sironi A. The electron density of bridging hydrides observed via experimental and theoretical investigations on [Cr2 (μ2-H)(Co) 10]-. J Am Chem Soc. 2005;127(47):16494–504 .

Al-Ibadi MAM, Alkurbasy NE, Alhimidi SRH. The topological classification of the bonding in [(Cp’Ru) 2 (Cp’Os)(μ3-N)2(μ-H)3] cluster. In: AIP Conference Proceedings. AIP Publishing LLC; 2019, 20009.

Alhimidi SRH, Al-Ibadi MAM, Hasan AH, Taha A. The QTAIM Approach to Chemical Bonding in Triruthenium Carbonyl Cluster:[Ru3(μ-H)(μ3-κ2-Haminox-N, N)(CO)9]. In: Journal of Physics: Conference Series. IOP Publishing; 2018,12068.

Van der Maelen JF, Topological Analysis of the Electron Density in the Carbonyl Complexes M(CO)8 (M = Ca, Sr, Ba), Organometallics 2020; 39, 1, 132–141.