Enhancement of Electron Temperature under Dense Homogenous Plasma by Pulsed Laser Beam

Main Article Content

Khalid A. Yahya

Abstract

The applications of hot plasma are many and numerous applications require high values of the temperature of the electrons within the plasma region. Improving electron temperature values is one of the important processes for using this specification in plasma for being adopted in several modern applications such as nuclear fusion, plating operations and in industrial applications. In this work, theoretical computations were performed to enhance electron temperature under dense homogeneous plasma. The effect of   power and duration time of pulsed Nd:YAG laser   was studied on the heating of   plasmas  by inverse bremsstrahlung  for  several values for the electron density ratio. There results for these calculations showed that the effect of increasing the values of the laser pulse power (25-250kW) led to decrease the absorption coefficient values by 58.3% and increase the electron temperature by 50.0% at duration pulse time 0.5ns and electron density ratio 0.1. Furthermore, the ratio of electron density increasing and pulse duration time led to increase the higher values of the electron temperature. The results of the calculations showed the effect of the laser power, the percentage of electron density, and the pulse duration for improving the electron temperature. It is possible to control the temperature of the electrons with one of the plasma parameters or the laser beam used, and that it gives a clear indication of researchers in this field to choose the optimal wavelength of the laser beam and    electron density ratios for the plasma.

Downloads

Download data is not yet available.

Article Details

How to Cite
1.
Yahya KA. Enhancement of Electron Temperature under Dense Homogenous Plasma by Pulsed Laser Beam. Baghdad Sci.J [Internet]. [cited 2021Jul.31];18(4):1344. Available from: https://bsj.uobaghdad.edu.iq/index.php/BSJ/article/view/5230
Section
article

References

Chen J , Fu T, Guo H, Li H .Effects of electron temperature on the ion extraction characteristics in a decaying plasma confined between two parallel plates. Plasma Sci. Technol. 2019;21:045402 (8pp). https://doi.org/10.1088/2058-6272/aaf884

Spatschek K H. High Temperature Plasmas: Theory and Mathematical Tools for Laser and Fusion Plasmas. Germany :WILEY-VCH Verlag GmbH & Co. KGaA; 2012.17p.

Wen Fu , Edison P L , Milad F , Donald QL , Michael G , Hye-Sook P ,et al. Increase ofthe density, temperature and velocity of plasma jets driven by a ring of high energy laser beams. High Energy Dens. Phys. 2013; 9: 336-340 http://dx.doi.org/10.1016/j.hedp.2013.03.004

KichiginG N. Plasma Heating in a Variable Magnetic Field. Plasma Phys. Rep. 2013; 39(5): 406–411. DOI: 10.1134/S1063780X13050073

Ratan N,Sircombe N J,Ceurvorst L, Sadler J,Kasim M F, Holloway J, et al. Dense plasma heating by crossing relativistic electron beams.Phys.Rev.E.2017;95: 013211. DOI: 10.1103/PhysRevE.95.013211

Abolfazl B,Samad S, Mohammad K,Robabeh T. The mean energy transfer and collisional absorption coefficient of high power laser in plasma. Optik.2020;212: 164666.https://doi.org/10.1016/j.ijleo.2020.164666

Sabah N M, Nada A A, Hazim I A, Noha H H. The effect of gas flow on plasma parameters induced by microwave. Baghdad Sci. J. 2018; 15(2):205-210. DOI:http://dx.doi.org/10.21123/bsj.2018.15.2. 0205

Pfalzner S, Gibbon P. Direct calculation of inverse-bremsstrahlung absorption in strongly coupled, nonlinearly driven laser plasmas. Phys.Rev.E. 1998;57(4):4698-4705.doi:10.1103/physreve.57.4698

Sharifian M,Ghoveisi F,Firouzi F N. Inverse Bremsstrahlung absorption in under-dense plasma with Kappa distributed electrons. AIP Adv.2017;7: 055107. http://dx.doi.org/10.1063/1.4983475

Liangliang J, Baifei S, Xiaomei Z. Transparency of near-critical density plasmas under extreme laser intensities. New J. Phys.2018;20: 053043. https://doi.org/10.1088/1367-2630/aac24b

WanY,Andriyash A, Hua J F,Pai C H, Lu W, Mori W B, et al. Two-stage laser acceleration of high quality protons using a tailored density plasma. Phys. Rev. Accel.Beams.2019;22:021301. 10.1103/PhysRevAccelBeams.22.021301

Fan C H, Sun J,Longtin J P. Plasma Absorption of Femtosecond Laser Pulses in Dielectrics. J. HeatTrans.2002;124: 275-283. https://doi.org/10.1115/1.1445135

CairnsRA.Laser-plasma interactions.Edinburg:Sussp-publications;1980.22p.

Wiggins D L, Raynor C T, Johnson III J A. Evidence of inverse bremsstrahlung in laser enhanced laser-induced plasma.Phys.Plasmas.2010;17: 103303. doi:10.1063/1.3501995

Rozmus W, Tikhonchuk V T. A model of ultra short laser pulse absorption in solid targets. Phys.Plasmas.1996 ;3 (1): 360-367. doi:10.1063/1.871861

Ettehadi-Abari M, Sedaghat M, Shokri B, Ghorbanalilu M. Absorption of short laser pulses inunder dense plasma by considering ohmic heating and ponderomotive force effects. Plasma Phys.Control. Fusion.2015; 57: 085001 (10pp).doi:10.1088/0741-3335/57/8/085001

Unnikrishnan V K, Kamlesh A, Kartha V B, Santhosh C, Gupta G P , Suri BM . Measurements of plasma temperature and electron density in laser-induced copper plasma by time-resolved spectroscopy of neutral atom and ion emissions. Pramana - J. Phys.2010;74: 983-993.